Advertisement

265th ENMC international workshop: Muscle imaging in Facioscapulohumeral Muscular Dystrophy (FSHD): Relevance for clinical trials. 22–24 April 2022, Hoofddorp, The Netherlands

Published:October 20, 2022DOI:https://doi.org/10.1016/j.nmd.2022.10.005

      Highlights

      • Muscle imaging can provide different biomarkers for FSHD.
      • Consensus on the diagnostic usefulness of MRI and its role in patients’ stratification.
      • Consensus on the harmonization and improvement of available quantitative MRI protocols.
      • Proposal of a shared research agenda between the FSHD CTRN and ETN imaging working groups.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Deenen J.C.W.
        • Arnts H.
        • van der Maarel S.M.
        • Padberg G.W.
        • Verschuuren J.J.G.M.
        • Bakker E.
        • et al.
        Population-based incidence and prevalence of facioscapulohumeral dystrophy.
        Neurology. 2014; 83: 1056-1059https://doi.org/10.1212/WNL.0000000000000797
        • Tawil R.
        • Padberg G.W.
        • Shaw D.W.
        • van der Maarel S.M.
        • Tapscott S.J.
        • FSHD Workshop Participants
        Clinical trial preparedness in facioscapulohumeral muscular dystrophy: clinical, tissue, and imaging outcome measures 29-30 May 2015, Rochester, New York.
        Neuromuscul Disordorders. 2016; 26: 181-186https://doi.org/10.1016/j.nmd.2015.10.005
        • LoRusso S.
        • Johnson N.E.
        • McDermott M.P.
        • Eichinger K.
        • Butterfield R.J.
        • et al.
        Clinical trial readiness to solve barriers to drug development in FSHD (ReSolve): protocol of a large, international, multi-center prospective study.
        BMC Neurol. 2019; 19: 224https://doi.org/10.1186/s12883-019-1452-x
        • Voermans N.C.
        • Vriens-Munoz Bravo M.
        • Padberg G.W.
        • Laforêt P
        1st FSHD European Trial Network workshop: working towards trial readiness across Europe.
        Neuromuscular Disorders. 2021; 31: 907-918https://doi.org/10.1016/j.nmd.2021.07.013
        • Chardon J.W.
        • Díaz-Manera J.
        • Tasca G.
        • Bönnemann C.G.
        • Gómez-Andrés D.
        • Heerschap A.
        • et al.
        MYO-MRI diagnostic protocols in genetic myopathies.
        Neuromuscular Disorders. 2019; 29: 827-841https://doi.org/10.1016/j.nmd.2019.08.011
        • Lemmers R.J.L.F.
        • van der Vliet P.J.
        • Klooster R.
        • Sacconi S.
        • Camaño P.
        • Dauwerse J.G.
        • et al.
        A unifying genetic model for facioscapulohumeral muscular dystrophy.
        Science. 2010; 329: 1650-1653https://doi.org/10.1126/science.1189044
        • Snider L.
        • Geng L.N.
        • Lemmers R.J.L.F.
        • Kyba M.
        • Ware C.B.
        • Nelson A.M.
        • et al.
        Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene.
        PLoS Genet. 2010; 6e1001181https://doi.org/10.1371/journal.pgen.1001181
        • Tasca G.
        • Pescatori M.
        • Monforte M.
        • Mirabella M.
        • Iannaccone E.
        • Frusciante R.
        • et al.
        Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles.
        PLoS ONE. 2012; 7: e38779https://doi.org/10.1371/journal.pone.0038779
        • Wang L.H.
        • Friedman S.D.
        • Shaw D.
        • Snider L.
        • Wong C.-.J.
        • Budech C.B.
        • et al.
        MRI-informed muscle biopsies correlate MRI with pathology and DUX4 target gene expression in FSHD.
        Hum Mol Genet. 2019; 28: 476-486https://doi.org/10.1093/hmg/ddy364
        • Scionti I.
        • Greco F.
        • Ricci G.
        • Govi M.
        • Arashiro P.
        • Vercelli L.
        • et al.
        Large-scale population analysis challenges the current criteria for the molecular diagnosis of fascioscapulohumeral muscular dystrophy.
        Am J Hum Genet. 2012; 90: 628-635https://doi.org/10.1016/j.ajhg.2012.02.019
        • Ruggiero L.
        • Mele F.
        • Manganelli F.
        • Bruzzese D.
        • Ricci G.
        • Vercelli L.
        • et al.
        Phenotypic variability among patients with D4Z4 reduced allele facioscapulohumeral muscular dystrophy.
        JAMA Netw Open. 2020; 3e204040https://doi.org/10.1001/jamanetworkopen.2020.4040
        • Tasca G.
        • Monforte M.
        • Iannaccone E.
        • Laschena F.
        • Ottaviani P.
        • Leoncini E.
        • et al.
        Upper girdle imaging in facioscapulohumeral muscular dystrophy.
        PLoS ONE. 2014; 9e100292https://doi.org/10.1371/journal.pone.0100292
        • Tasca G.
        • Monforte M.
        • Ottaviani P.
        • Pelliccioni M.
        • Frusciante R.
        • Laschena F.
        • et al.
        Magnetic resonance Imaging in a large cohort of facioscapulohumeral muscular dystrophy patients: pattern refinement and implications for clinical trials.
        Ann Neurol. 2016; 79: 854-864https://doi.org/10.1002/ana.24640
        • Monforte M.
        • Bortolani S.
        • Torchia E.
        • Cristiano L.
        • Laschena F.
        • Tartaglione T.
        • et al.
        Diagnostic magnetic resonance imaging biomarkers for facioscapulohumeral muscular dystrophy identified by machine learning.
        J Neurol. 2021; 269: 2055-2063https://doi.org/10.1007/s00415-021-10786-1
        • Tasca G.
        • Monforte M.
        • Corbi M.
        • Granata G.
        • Lucchetti D.
        • Sgambato A.
        • et al.
        Muscle microdialysis to investigate inflammatory biomarkers in facioscapulohumeral muscular dystrophy.
        Mol Neurobiol. 2018; 55: 2959-2966https://doi.org/10.1007/s12035-017-0563-x
        • Corasolla Carregari V.
        • Monforte M.
        • Di Maio G.
        • Pieroni L.
        • Urbani A.
        • Ricci E.
        • et al.
        Proteomics of muscle microdialysates identifies potential circulating biomarkers in facioscapulohumeral muscular dystrophy.
        IJMS. 2020; 22: 290https://doi.org/10.3390/ijms22010290
        • Banerji C.R.S.
        • Zammit P.S.
        PAX7 target gene repression is a superior FSHD biomarker than DUX4 target gene activation, associating with pathological severity and identifying FSHD at the single-cell level.
        Hum Mol Genet. 2019; 28: 2224-2236https://doi.org/10.1093/hmg/ddz043
        • Dahlqvist J.R.
        • Andersen G.
        • Khawajazada T.
        • Vissing C.
        • Thomsen C.
        • Vissing J.
        Relationship between muscle inflammation and fat replacement assessed by MRI in facioscapulohumeral muscular dystrophy.
        J Neurol. 2019; 266: 1127-1135https://doi.org/10.1007/s00415-019-09242-y
        • Monforte M.
        • Laschena F.
        • Ottaviani P.
        • Bagnato M.R.
        • Pichiecchio A.
        • Tasca G.
        • et al.
        Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging.
        J Cachexia Sarcopenia Muscle. 2019; 10: 1258-1265https://doi.org/10.1002/jcsm.12473
        • Mul K.
        • Vincenten S.C.C.
        • Voermans N.C.
        • Lemmers R.J.L.F.
        • van der Vliet P.J.
        • van der Maarel S.M.
        • et al.
        Adding quantitative muscle MRI to the FSHD clinical trial toolbox.
        Neurology. 2017; 89: 2057-2065https://doi.org/10.1212/WNL.0000000000004647
        • Giacomucci G.
        • Monforte M.
        • Diaz-Manera J.
        • Mul K.
        • Fernandez Torrón R.
        • Maggi L.
        • et al.
        Deep phenotyping of facioscapulohumeral muscular dystrophy type 2 by magnetic resonance imaging.
        Eur J Neurol. 2020; 27: 2604-2615https://doi.org/10.1111/ene.14446
        • Mair D.
        • Huegens-Penzel M.
        • Kress W.
        • Roth C.
        • Ferbert A.
        Leg muscle involvement in facioscapulohumeral muscular dystrophy: comparison between facioscapulohumeral muscular dystrophy types 1 and 2.
        Eur Neurol. 2017; 77: 32-39https://doi.org/10.1159/000452763
        • Mercuri E.
        • Pichiecchio A.
        • Allsop J.
        • Messina S.
        • Pane M.
        • Muntoni F.
        Muscle MRI in inherited neuromuscular disorders: past, present, and future.
        J Magn Reson Imaging. 2007; 25: 433-440https://doi.org/10.1002/jmri.20804
        • Dahlqvist J.R.
        • Vissing C.R.
        • Thomsen C.
        • Vissing J.
        Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy.
        Neurology. 2014; 83: 1178-1183https://doi.org/10.1212/WNL.0000000000000828
        • Dahlqvist J.R.
        • Widholm P.
        • Leinhard O.D.
        • Vissing J.
        MRI in neuromuscular diseases: an emerging diagnostic tool and biomarker for prognosis and efficacy.
        Ann Neurol. 2020; 88: 669-681https://doi.org/10.1002/ana.25804
        • Salim R.
        • Dahlqvist J.R.
        • Khawajazada T.
        • Kass K.
        • Revsbech K.L.
        • de Stricker Borch J.
        • et al.
        Characteristic muscle signatures assessed by quantitative MRI in patients with Bethlem myopathy.
        J Neurol. 2020; 267: 2432-2442https://doi.org/10.1007/s00415-020-09860-x
        • Willis T.A.
        • Hollingsworth K.G.
        • Coombs A.
        • Sveen M.L.
        • Andersen S.
        • Stojkovic T.
        • et al.
        Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I: a multinational cross-sectional study.
        PLoS ONE. 2014; 9: e90377https://doi.org/10.1371/journal.pone.0090377
        • Andersen G.
        • Dahlqvist J.R.
        • Vissing C.R.
        • Heje K.
        • Thomsen C.
        • Vissing J.
        MRI as outcome measure in facioscapulohumeral muscular dystrophy: 1-year follow-up of 45 patients.
        J Neurol. 2017; 264: 438-447https://doi.org/10.1007/s00415-016-8361-3
        • Dahlqvist J.R.
        • Poulsen N.S.
        • Østergaard S.T.
        • Fornander F.
        • de Stricker Borch J.
        • Danielsen E.R.
        • et al.
        Evaluation of inflammatory lesions over 2 years in facioscapulohumeral muscular dystrophy.
        Neurology. 2020; 95: e1211-e1221https://doi.org/10.1212/WNL.0000000000010155
        • Paoletti M.
        • Diamanti L.
        • Muzic S.I.
        • Ballante E.
        • Solazzo F.
        • Foppoli L.
        • et al.
        Longitudinal quantitative MRI evaluation of muscle involvement in amyotrophic lateral sclerosis.
        Front Neurol. 2021; 12749736https://doi.org/10.3389/fneur.2021.749736
        • Deligianni X.
        • Santini F.
        • Paoletti M.
        • Solazzo F.
        • Bergsland N.
        • Savini G.
        • et al.
        Dynamic magnetic resonance imaging of muscle contraction in facioscapulohumeral muscular dystrophy.
        Sci Rep. 2022; 12: 7250https://doi.org/10.1038/s41598-022-11147-2
        • Ricci E.
        • Galluzzi G.
        • Deidda G.
        • Cacurri S.
        • Colantoni L.
        • Merico B.
        • et al.
        Progress in the molecular diagnosis of facioscapulohumeral muscular dystrophy and correlation between the number of KpnI repeats at the 4q35 locus and clinical phenotype.
        Ann Neurol. 1999; 45: 751-757
        • Deligianni X.
        • Pansini M.
        • Garcia M.
        • Hirschmann A.
        • Schmidt-Trucksäss A.
        • Bieri O.
        • et al.
        Synchronous MRI of muscle motion induced by electrical stimulation.
        Magn Reson Med. 2017; 77: 664-672https://doi.org/10.1002/mrm.26154
        • van de Velde N.M.
        • Hooijmans M.T.
        • Sardjoe Mishre A.S.D.
        • Keene K.R.
        • Koeks Z.
        • Veeger T.T.J.
        • et al.
        Selection approach to identify the optimal biomarker using quantitative muscle MRI and functional assessments in Becker muscular dystrophy.
        Neurology. 2021; 97: e513-e522https://doi.org/10.1212/WNL.0000000000012233
        • Veeger T.T.J.
        • Velde N.M.
        • Keene K.R.
        • Niks E.H.
        • Hooijmans M.T.
        • Webb A.G.
        • et al.
        Baseline fat fraction is a strong predictor of disease progression in Becker muscular dystrophy.
        NMR Biomed. 2022; 35: e4691https://doi.org/10.1002/nbm.4691
        • Lamperti C.
        • Fabbri G.
        • Vercelli L.
        • D'Amico R.
        • Frusciante R.
        • Bonifazi E.
        • et al.
        A standardized clinical evaluation of patients affected by facioscapulohumeral muscular dystrophy: the FSHD clinical score.
        Muscle Nerve. 2010; 42: 213-217https://doi.org/10.1002/mus.21671
        • Bérard C.
        • Payan C.
        • Hodgkinson I.
        • Fermanian J.
        • The MFM Collaborative Study Group
        A motor function measure scale for neuromuscular diseases. Construction and validation study.
        Neuromuscular Disorders. 2005; 15: 463-470https://doi.org/10.1016/j.nmd.2005.03.004
        • Leung D.G.
        • Wang X.
        • Barker P.B.
        • Carrino J.A.
        • Wagner K.R.
        Multivoxel proton magnetic resonance spectroscopy in facioscapulohumeral muscular dystrophy: proton MRS in FSHD.
        Muscle Nerve. 2018; 57: 958-963https://doi.org/10.1002/mus.26048
      1. Bocchieri A.E., Parekh V.S., Wagner K.R., Ahlawat S., Braverman V., Leung D.G., et al. Multiparametric deep learning tissue signatures for muscular dystrophy: preliminary results. arXiv:1908.00175.

        • Leung D.G.
        • Bocchieri A.E.
        • Ahlawat S.
        • Jacobs M.A.
        • Parekh V.S.
        • Braverman V.
        • et al.
        Longitudinal functional and imaging outcome measures in FKRP limb-girdle muscular dystrophy.
        BMC Neurol. 2020; 20: 196https://doi.org/10.1186/s12883-020-01774-5
        • Wong C.J.
        • Wang L.H.
        • Friedman S.D.
        • Shaw D.
        • Campbell A.E.
        • Budech C.B.
        • et al.
        Longitudinal measures of RNA expression and disease activity in FSHD muscle biopsies.
        Hum Mol Genet. 2020; 29: 1030-1043https://doi.org/10.1093/hmg/ddaa031
        • Wang L.H.
        • Shaw D.W.W.
        • Faino A.
        • Budech C.B.
        • Lewis L.M.
        • Statland J.
        • et al.
        Longitudinal study of MRI and functional outcome measures in facioscapulohumeral muscular dystrophy.
        BMC Musculoskelet Disord. 2021; 22: 262https://doi.org/10.1186/s12891-021-04134-7
        • Gershman A.
        • Chiang K.
        • Do M.
        • Abbink E.
        • Harbers V.
        • Audebert C.
        • et al.
        A randomized, double-blinded, placebo-controlled, multiple ascending dose study to evaluate the safety, tolerability, pharmacokinetics, immunogenicity, and biological activity of ATYR1940 in adult patients with facioscapulohumeral muscular dystrophy (FSHD).
        Neuromuscular Disorders. 2016; 26: S167https://doi.org/10.1016/j.nmd.2016.06.293
        • Jagannathan S.
        • de Greef J.C.
        • Hayward L.J.
        • Yokomori K.
        • Gabellini D.
        • Mul K.
        • et al.
        Meeting report: the 2021 FSHD international research congress 2022.
        Skelet Muscle. 2022; 12: 1https://doi.org/10.1186/s13395-022-00287-8
        • Mellion M.L.
        • Widholm P.
        • Karlsson M.
        • Ahlgren A.
        • Tawil R.
        • Wagner K.R.
        • et al.
        Quantitative muscle analysis in FSHD using whole-body fat-referenced MRI: composite scores for longitudinal and cross-sectional analysis.
        Neurology. 2022; https://doi.org/10.1212/WNL.0000000000200757
        • Widholm P.
        • Ahlgren A.
        • Karlsson M.
        • Romu T.
        • Tawil R.
        • Wagner K.R.
        • et al.
        Quantitative muscle analysis in facioscapulohumeral muscular dystrophy using whole-body fat-referenced MRI: protocol development, multicenter feasibility, and repeatability.
        Muscle Nerve. 2022; 66: 183-192https://doi.org/10.1002/mus.27638
      2. Morabito C. A phase 2, randomized, double-blind, placebo-controlled, 48-Week study of the efficacy and safety of losmapimod in subjects with FSHD: reDUX4, https://www.fulcrumtx.com/wp-content/uploads/AAN-2022_ReDUX4-presentation_FINAL_220408.pdf; 2022 [accessed 28 September 2022].

        • Burakiewicz J.
        • Sinclair C.D.J.
        • Fischer D.
        • Walter G.A.
        • Kan H.E.
        • Hollingsworth K.G.
        Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy.
        J Neurol. 2017; 264: 2053-2067https://doi.org/10.1007/s00415-017-8547-3
        • Diaz-Manera J.
        • Fernandez-Torron R.
        • LLauger J.
        • James M.K.
        • Mayhew A.
        • Smith F.E.
        • et al.
        Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials.
        J Neurol Neurosurg Psychiatry. 2018; 89: 1071-1081https://doi.org/10.1136/jnnp-2017-317488
        • Morrow J.M.
        • Sinclair C.D.J.
        • Fischmann A.
        • Machado P.M.
        • Reilly M.M.
        • Yousry T.A.
        • et al.
        MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study.
        Lancet Neurol. 2016; 15: 65-77https://doi.org/10.1016/S1474-4422(15)00242-2
        • Willcocks R.J.
        • Rooney W.D.
        • Triplett W.T.
        • Forbes S.C.
        • Lott D.J.
        • Senesac C.R.
        • et al.
        Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort: longitudinal muscle MR in DMD.
        Ann Neurol. 2016; 79: 535-547https://doi.org/10.1002/ana.24599
        • Reyngoudt H.
        • Smith F.E.
        • Caldas de Almeida Araújo E.
        • Wilson I.
        • Fernández-Torrón R.
        • James M.K.
        • et al.
        Three-year quantitative magnetic resonance imaging and phosphorus magnetic resonance spectroscopy study in lower limb muscle in dysferlinopathy.
        J Cachexia Sarcopenia Muscle. 2022; 13: 1850-1863https://doi.org/10.1002/jcsm.12987
        • Murphy A.P.
        • Morrow J.
        • Dahlqvist J.R.
        • Stojkovic T.
        • Willis T.A.
        • Sinclair C.D.J.
        • et al.
        Natural history of limb girdle muscular dystrophy R9 over 6 years: searching for trial endpoints.
        Ann Clin Transl Neurol. 2019; 6: 1033-1045https://doi.org/10.1002/acn3.774
        • Nuñez-Peralta C.
        • Alonso-Pérez J.
        • Llauger J.
        • Segovia S.
        • Montesinos P.
        • Belmonte I.
        • et al.
        Follow-up of late-onset Pompe disease patients with muscle magnetic resonance imaging reveals increase in fat replacement in skeletal muscles.
        J Cachexia Sarcopenia Muscle. 2020; 11: 1032-1046https://doi.org/10.1002/jcsm.12555
        • Barnard A.M.
        • Willcocks R.J.
        • Triplett W.T.
        • Forbes S.C.
        • Daniels M.J.
        • Chakraborty S.
        • et al.
        MR biomarkers predict clinical function in Duchenne muscular dystrophy.
        Neurology. 2020; 94: e897-e909https://doi.org/10.1212/WNL.0000000000009012
        • Naarding K.J.
        • Reyngoudt H.
        • van Zwet E.W.
        • Hooijmans M.T.
        • Tian C.
        • Rybalsky I.
        • et al.
        MRI vastus lateralis fat fraction predicts loss of ambulation in Duchenne muscular dystrophy.
        Neurology. 2020; 94: e1386-e1394https://doi.org/10.1212/WNL.0000000000008939
        • Naarding K.J.
        • van der Holst M.
        • van Zwet E.W.
        • van de Velde N.M.
        • de Groot I.J.M.
        • Verschuuren J.J.G.M.
        • et al.
        Association of elbow flexor MRI fat fraction with loss of hand-to-mouth movement in patients with duchenne muscular dystrophy.
        Neurology. 2021; 97: e1737-e1742https://doi.org/10.1212/WNL.0000000000012724
        • Moore U.
        • Caldas de Almeida Araújo E.
        • Reyngoudt H.
        • Gordish-Dressman H.
        • Smith F.E.
        • Wilson I.
        • et al.
        Water T2 could predict functional decline in patients with dysferlinopathy.
        J Cachexia Sarcopenia Muscle. 2022; : jcsm.13063https://doi.org/10.1002/jcsm.13063
        • Fatehi F.
        • Salort-Campana E.
        • Le Troter A.
        • Lareau-Trudel E.
        • Bydder M.
        • Fouré A.
        • et al.
        Long-term follow-up of MRI changes in thigh muscles of patients with Facioscapulohumeral dystrophy: a quantitative study.
        PLoS ONE. 2017; 12e0183825https://doi.org/10.1371/journal.pone.0183825
        • Le Troter A.
        • Fouré A.
        • Guye M.
        • Confort-Gouny S.
        • Mattei J.-.P.
        • Gondin J.
        • et al.
        Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.
        Magn Reson Mater Phys. 2016; 29: 245-257https://doi.org/10.1007/s10334-016-0535-6
        • Ogier A.
        • Sdika M.
        • Foure A.
        • Le Troter A.
        • Bendahan D
        Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches.
        in: Proceedings of the 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Seogwipo IEEE, 2017: 317-320https://doi.org/10.1109/EMBC.2017.8036826
        • Anwar S.M.
        • Irmakci I.
        • Torigian D.A.
        • Jambawalikar S.
        • Papadakis G.Z.
        • Akgun C.
        • et al.
        Semi-supervised deep learning for multi-tissue segmentation from multi-contrast MRI.
        J Sign Process Syst. 2022; 94: 497-510https://doi.org/10.1007/s11265-020-01612-4
        • Ding J.
        • Cao P.
        • Chang H.-.C.
        • Gao Y.
        • Chan S.H.S.
        • Vardhanabhuti V.
        Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI.
        Insights Imaging. 2020; 11: 128https://doi.org/10.1186/s13244-020-00946-8
        • Agosti A.
        • Shaqiri E.
        • Paoletti M.
        • Solazzo F.
        • Bergsland N.
        • Colelli G.
        • et al.
        Deep learning for automatic segmentation of thigh and leg muscles.
        Magn Reson Mater Phys. 2022; 35: 467-483https://doi.org/10.1007/s10334-021-00967-4
        • Kan H.E.
        • Klomp D.W.J.
        • Wong C.S.
        • Boer V.O.
        • Webb A.G.
        • Luijten P.R.
        • et al.
        In vivo31P MRS detection of an alkaline inorganic phosphate pool with short T1 in human resting skeletal muscle.
        NMR Biomed. 2010; 23: 995-1000https://doi.org/10.1002/nbm.1517
        • Janssen B.H.
        • Voet N.B.M.
        • Nabuurs C.I.
        • Kan H.E.
        • de Rooy J.W.J.
        • Geurts A.C.
        • et al.
        Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration.
        PLoS ONE. 2014; 9: e85416https://doi.org/10.1371/journal.pone.0085416
        • Gerhalter T.
        • Gast L.V.
        • Marty B.
        • Martin J.
        • Trollmann R.
        • Schüssler S.
        • et al.
        23 Na MRI depicts early changes in ion homeostasis in skeletal muscle tissue of patients with duchenne muscular dystrophy.
        J Magn Reson Imaging. 2019; 50: 1103-1113https://doi.org/10.1002/jmri.26681
        • Gerhalter T.
        • Marty B.
        • Gast L.V.
        • Porzelt K.
        • Heiss R.
        • Uder M.
        • et al.
        Quantitative 1H and 23Na muscle MRI in facioscapulohumeral muscular dystrophy patients.
        J Neurol. 2021; 268: 1076-1087https://doi.org/10.1007/s00415-020-10254-2
        • Martins-Bach A.B.
        • Bachasson D.
        • Araujo E.C.A.
        • Soustelle L.
        • Loureiro de Sousa P.
        • Fromes Y.
        • et al.
        Non-invasive assessment of skeletal muscle fibrosis in mice using nuclear magnetic resonance imaging and ultrasound shear wave elastography.
        Sci Rep. 2021; 11: 284https://doi.org/10.1038/s41598-020-78747-8
        • Carlier P.G.
        • Marty B.
        • Scheidegger O.
        • Loureiro de Sousa P.
        • Baudin P.Y.
        • Snezhko E.
        • et al.
        Skeletal muscle quantitative nuclear magnetic resonance imaging and spectroscopy as an outcome measure for clinical trials.
        J Neuromuscul Dis. 2016; 3: 1-28https://doi.org/10.3233/JND-160145
        • Murphy A.P.
        • Greally E.
        • O'Hogain D.
        • Blamire A.
        • Caravan P.
        • Straub V.
        Noninvasive quantification of fibrosis in skeletal and cardiac muscle in mdx mice using EP3533 enhanced magnetic resonance imaging.
        Magn Reson Med. 2019; 81: 2728-2735https://doi.org/10.1002/mrm.27578
        • Mul K.
        • Horlings C.G.C.
        • Vincenten S.C.C.
        • Voermans N.C.
        • van Engelen B.G.M.
        • van Alfen N.
        Quantitative muscle MRI and ultrasound for facioscapulohumeral muscular dystrophy: complementary imaging biomarkers.
        J. Neurol. 2018; 265: 2646-2655https://doi.org/10.1007/s00415-018-9037-y
        • Regensburger A.P.
        • Fonteyne L.M.
        • Jüngert J.
        • Wagner A.L.
        • Gerhalter T.
        • Nagel A.M.
        • et al.
        Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy.
        Nat. Med. 2019; 25: 1905-1915https://doi.org/10.1038/s41591-019-0669-y
        • Wijntjes J.
        • Alfen N.
        Muscle ultrasound: present state and future opportunities.
        Muscle Nerve. 2021; 63: 455-466https://doi.org/10.1002/mus.27081
        • Goselink R.J.M.
        • Schreuder T.H.A.
        • Mul K.
        • Voermans N.C.
        • Erasmus C.E.
        • van Engelen B.G.M.
        • et al.
        Muscle ultrasound is a responsive biomarker in facioscapulohumeral dystrophy.
        Neurology. 2020; 94: e1488-e1494https://doi.org/10.1212/WNL.0000000000009211
        • Loonen T.G.J.
        • Horlings C.G.C.
        • Vincenten S.C.C.
        • Beurskens C.H.G.
        • Knuijt S.
        • Padberg G.W.A.M.
        • et al.
        Characterizing the face in facioscapulohumeral muscular dystrophy.
        J Neurol. 2021; 268: 1342-1350https://doi.org/10.1007/s00415-020-10281-z
        • Salvi M.
        • Caresio C.
        • Meiburger K.M.
        • De Santi B.
        • Molinari F.
        • Minetto M.A.
        Transverse Muscle Ultrasound Analysis (TRAMA): robust and accurate segmentation of muscle cross-sectional area.
        Ultrasound Med Biol. 2019; 45: 672-683https://doi.org/10.1016/j.ultrasmedbio.2018.11.012
        • Caresio C.
        • Salvi M.
        • Molinari F.
        • Meiburger K.M.
        • Minetto M.A.
        Fully Automated Muscle Ultrasound Analysis (MUSA): robust and accurate muscle thickness measurement.
        Ultrasound Med Biol. 2017; 43: 195-205https://doi.org/10.1016/j.ultrasmedbio.2016.08.032
        • Meiburger K.
        • Salvi M.
        • Giacchino M.
        • Acharya U.
        • Minetto M.
        • Caresio C.
        • et al.
        Quantitative analysis of patellar tendon abnormality in asymptomatic professional “Pallapugno” players: a texture-based ultrasound approach.
        Appl Sci. 2018; 8: 660https://doi.org/10.3390/app8050660
        • Marzola F.
        • van Alfen N.
        • Doorduin J.
        • Meiburger K.M.
        Deep learning segmentation of transverse musculoskeletal ultrasound images for neuromuscular disease assessment.
        Comput Biol Med. 2021; 135104623https://doi.org/10.1016/j.compbiomed.2021.104623
        • Tawil R.
        • Kissel J.T.
        • Heatwole C.
        • Pandya S.
        • Gronseth G.
        • Benatar M.
        Evidence-based guideline summary: evaluation, diagnosis, and management of facioscapulohumeral muscular dystrophy: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology and the practice issues review panel of the american association of neuromuscular & electrodiagnostic medicine.
        Neurology. 2015; 85: 357-364https://doi.org/10.1212/WNL.0000000000001783
        • Baker M.
        1,500 scientists lift the lid on reproducibility.
        Nature. 2016; 533: 452-454https://doi.org/10.1038/533452a
        • Alonso-Jiménez A.
        • Nuñez-Peralta C.
        • Montesinos P.
        • Alonso-Pérez J.
        • García C.
        • Montiel E.
        • et al.
        Different approaches to analyze muscle fat replacement with dixon MRI in pompe disease.
        Front Neurol. 2021; 12675781https://doi.org/10.3389/fneur.2021.675781