Advertisement

Masseter muscle volume as a disease marker in adult-onset myotonic dystrophy type 1

  • Agata Oliwa
    Correspondence
    Corresponding author.
    Affiliations
    School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
    Search for articles by this author
  • Clarissa Hocking
    Affiliations
    School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
    Search for articles by this author
  • Mark J Hamilton
    Affiliations
    West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
    Search for articles by this author
  • John McLean
    Affiliations
    Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
    Search for articles by this author
  • Sarah Cumming
    Affiliations
    Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow G12 0XH, United Kingdom
    Search for articles by this author
  • Bob Ballantyne
    Affiliations
    West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
    Search for articles by this author
  • Ravi Jampana
    Affiliations
    Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
    Search for articles by this author
  • Cheryl Longman
    Affiliations
    West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
    Search for articles by this author
  • Author Footnotes
    1 Equal contribution as senior authors
    Darren G Monckton
    Footnotes
    1 Equal contribution as senior authors
    Affiliations
    Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow G12 0XH, United Kingdom
    Search for articles by this author
  • Author Footnotes
    1 Equal contribution as senior authors
    Maria Elena Farrugia
    Footnotes
    1 Equal contribution as senior authors
    Affiliations
    Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
    Search for articles by this author
  • The Scottish Myotonic Dystrophy Consortium
  • Author Footnotes
    1 Equal contribution as senior authors
Published:September 23, 2022DOI:https://doi.org/10.1016/j.nmd.2022.09.005

      Highlights

      • Advent of clinical trials in DM1 warrants research into reliable outcome measures.
      • Masseter muscle volume can be estimated from MR brain images.
      • Masseter muscle is significantly atrophied in DM1 patients.
      • Masseter muscle volume correlates with genetic determinants of DM1 severity.
      • Brain MRI can be used to assess both central and peripheral involvement in DM.

      Abstract

      The advent of clinical trials in myotonic dystrophy type 1 (DM1) necessitates the identification of reliable outcome measures to quantify different disease manifestations using minimal number of assessments. In this study, clinical correlations of mean masseter volume (mMV) were explored to evaluate its potential as a marker of muscle involvement in adult-onset DM1 patients. We utilised data from a preceding study, pertaining to 39 DM1 patients and 20 age-matched control participants. In this study participants had undergone MRI of the brain, completed various clinical outcome measures and had CTG repeats measured by small-pool PCR. Manual segmentation of masseter muscles was performed by a single rater to estimate mMV. The masseter muscle was atrophied in DM1 patients when compared to controls (p<0.001). Significant correlations were found between mMV and estimated progenitor allele length (p = 0.001), modal allele length (p = 0.003), disease duration (p = 0.009) and and the Muscle Impairment Rating Scale (p = 0.008). After correction for lean body mass, mMV was also inversely correlated with self-reported myotonia (p = 0.014). This study demonstrates that changes in mMV are sensitive in reflecting the underlying disease process. Quantitative MRI methods demonstrate that data concerning both central and peripheral disease could be acquired from MR brain imaging studies in DM1 patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brook J.D.
        • McCurrach M.E.
        • Harley H.G.
        • Buckler A.J.
        • Church D.
        • Aburatani H.
        • et al.
        Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member.
        Cell. 1992; 69: 385https://doi.org/10.1016/0092-8674(92)90418-c
        • Fu Y.H.
        • Pizzuti A.
        • Fenwick R.G.
        • King J.
        • Rajnarayan S.
        • Dunne P.W.
        • et al.
        An unstable triplet repeat in a gene related to myotonic muscular dystrophy.
        Science. 1992; 255: 1256-1258https://doi.org/10.1126/science.1546326
        • Harley H.G.
        • Brook J.D.
        • Rundle S.A.
        • Crow S.
        • Reardon W.
        • Buckler A.J.
        • et al.
        Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy.
        Nature. 1992; 355: 545-546https://doi.org/10.1038/355545a0
        • Mahadevan M.
        • Tsilfidis C.
        • Sabourin L.
        • Shutler G.
        • Amemiya C.
        • Jansen G.
        • et al.
        Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene.
        Science. 1992; 255: 1253-1255https://doi.org/10.1126/science.1546325
        • Wells R.D.
        • Ashizawa T.
        Genetic instabilities and neurological diseases.
        Elsevier Inc, 2006
        • Umemoto G.
        • Nakamura H.
        • Oya Y.
        • Kikuta T.
        Masticatory dysfunction in patients with myotonic dystrophy (type 1): a 5-year follow-up.
        Spec Care Dentist. 2009; 29: 210-214https://doi.org/10.1111/j.1754-4505.2009.00093.x
        • Udd B.
        • Krahe R.
        The myotonic dystrophies: molecular, clinical, and therapeutic challenges.
        Lancet Neurol. 2012; 11: 891-905https://doi.org/10.1016/S1474-4422(12)70204-1
        • Harley H.G.
        • Rundle S.A.
        • MacMillan J.C.
        • Myring J.
        • Brook J.D.
        • Crow S.
        • et al.
        Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy.
        Am J Hum Genet. 1993; 52: 1164-1174
        • Musova Z.
        • Mazanec R.
        • Krepelova A.
        • Ehler E.
        • Vales J.
        • Jaklova R.
        • et al.
        Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene.
        Am J Med Genet A. 2009; 149a: 1365-1374https://doi.org/10.1002/ajmg.a.32987
        • Braida C.
        • Stefanatos R.K.
        • Adam B.
        • Mahajan N.
        • Smeets H.J.
        • Niel F.
        • et al.
        Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients.
        Hum Mol Genet. 2010; 19: 1399-1412https://doi.org/10.1093/hmg/ddq015
        • Thornton C.A.
        • Wang E.
        • Carrell E.M.
        Myotonic dystrophy: approach to therapy. Current opinion in genetics.
        & development. 2017; 44: 135-140https://doi.org/10.1016/j.gde.2017.03.007
        • IONIS. Isis
        Pharmaceuticals initiates phase 1/2 study of isis-dmpk rx in patients with myotonic dystrophy type 1.
        Press Release, 2020 ([cited: 15/11/2020]. Available from)
        • Gagnon C.
        • Meola G.
        • Hébert L.J.
        • Puymirat J.
        • Laberge L.
        • Leone M.
        Report of the first outcome measures in myotonic dystrophy type 1 (OMMYD-1) international workshop: clearwater, Florida, November 30, 2011.
        Neuromuscul Disord. 2013; 23: 1056-1068https://doi.org/10.1016/j.nmd.2013.07.004
        • Gagnon C.
        • Meola G.
        • Hébert L.J.
        • Laberge L.
        • Leone M.
        • Heatwole C.
        Report of the second outcome measures in myotonic dystrophy type 1 (OMMYD-2) international workshop San Sebastian, Spain, October 16, 2013.
        Neuromuscul Disord. 2015; 25: 603-616https://doi.org/10.1016/j.nmd.2015.01.008
        • Gagnon C.
        • Heatwole C.
        • Hébert L.
        • Hogrel J.-.Y.
        • Laberge L.
        • Leone M.
        • et al.
        Report of the third outcome measures in myotonic dystrophy type 1 (OMMYD-3) international workshop Paris, France, June 8, 2015.
        J Neuromuscul Dis. 2018; 5: 1-15https://doi.org/10.3233/JND-180329
        • Hogrel J.Y.
        • Ollivier G.
        • Desnuelle C.
        Testing musculaire manuel et quantifié dans les maladies neuromusculaires. Comment assurer la qualité des mesures de force dans les protocoles cliniques?.
        Rev Neurol. 2006; 162 (Paris)doi: RN-04-2006-162-4-0035-3787-101019-200601703: 427-436
        • Escolar D.M.
        • Henricson E.K.
        • Mayhew J.
        • Florence J.
        • Leshner R.
        • Patel K.M.
        • Clemens P.R.
        Clinical evaluator reliability for quantitative and manual muscle testing measures of strength in children.
        Muscle Nerve. 2001; 24: 787-793https://doi.org/10.1002/mus.1070
        • Merlini L.
        Measuring muscle strength in clinical trials.
        Lancet Neurol. 2010; 9: 1146https://doi.org/10.1016/S1474-4422(10)70285-4
        • Cabada T.
        • Iridoy M.
        • Jericó I.
        • Lecumberri P.
        • Seijas R.
        • Gargallo A.
        • Gomez M.
        Brain involvement in myotonic dystrophy type 1: a morphometric and diffusion tensor imaging study with neuropsychological correlation.
        Arch Clin Neuropsychol. 2017; 32: 401-412https://doi.org/10.1093/arclin/acx008
        • Schneider-Gold C.
        • Bellenberg B.
        • Prehn C.
        • Krogias C.
        • Schneider R.
        • Klein J.
        • et al.
        Cortical and subcortical grey and white matter atrophy in myotonic dystrophies type 1 and 2 is associated with cognitive impairment, depression and daytime sleepiness.
        PLoS ONE. 2015; 10 (-e0130352)e0130352https://doi.org/10.1371/journal.pone.0130352
        • Hamilton M.J.
        • McLean J.
        • Cumming S.
        • Ballantyne B.
        • McGhie J.
        • Jampana R.
        • et al.
        Outcome measures for central nervous system evaluation in Myotonic dystrophy type 1 May be confounded by deficits in motor function or Insight.
        Front Neurol. 2018; 9: 780https://doi.org/10.3389/fneur.2018.00780
        • Zanigni S.
        • Evangelisti S.
        • Giannoccaro M.P.
        • Oppi F.
        • Poda R.
        • Giorgio A.
        • et al.
        Relationship of white and gray matter abnormalities to clinical and genetic features in myotonic dystrophy type 1.
        Neuroimage Clin. 2016; 11: 678-685https://doi.org/10.1016/j.nicl.2016.04.012
        • Baldanzi S.
        • Cecchi P.
        • Fabbri S.
        • Pesaresi I.
        • Simoncini C.
        • Angelini C.
        • et al.
        Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1.
        Neuroimage Clin. 2016; 12: 190-197https://doi.org/10.1016/j.nicl.2016.06.011
        • van der Plas E.
        • Hamilton M.J.
        • Miller J.N.
        • Koscik T.R.
        • Long J.D.
        • Cumming S.
        • et al.
        Brain structural features of myotonic dystrophy type 1 and their relationship with CTG repeats.
        J Neuromuscul Dis. 2019; 6: 321-332https://doi.org/10.3233/JND-190397
        • Okkersen K.
        • Buskes M.
        • Groenewoud J.
        • Kessels R.P.C.
        • Knoop H.
        • van Engelen B.
        • Raaphorst J.
        The cognitive profile of myotonic dystrophy type 1: a systematic review and meta-analysis.
        Cortex. 2017; 95: 143-155https://doi.org/10.1016/j.cortex.2017.08.008
        • Okkersen K.
        • Monckton D.G.
        • Le N.
        • Tuladhar A.M.
        • Raaphorst J.
        • van Engelen B.G.M.
        Brain imaging in myotonic dystrophy type 1.
        Neurology. 2017; 89: 960https://doi.org/10.1212/WNL.0000000000004300
        • Gliem C.
        • Minnerop M.
        • Roeske S.
        • Gärtner H.
        • Schoene-Bake J.C.
        • Adler S.
        • et al.
        Tracking the brain in myotonic dystrophies: a 5-year longitudinal follow-up study.
        PLoS ONE. 2019; 14e0213381https://doi.org/10.1371/journal.pone.0213381
        • Leung D.G.
        Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review.
        J Neurol. 2017; 264: 1320-1333https://doi.org/10.1007/s00415-016-8350-6
        • Heskamp L.
        • van Nimwegen M.
        • Ploegmakers M.J.
        • Bassez G.
        • Deux J.F.
        • Cumming S.A.
        • et al.
        Lower extremity muscle pathology in myotonic dystrophy type 1 assessed by quantitative MRI.
        Neurology. 2019; 92: e2803-e2814https://doi.org/10.1212/wnl.0000000000007648
        • Park D.
        • Lee S.H.
        • Shin J.H.
        • Park J.S.
        Lower limb muscle magnetic resonance imaging in myotonic dystrophy type 1 correlates with the six-minute walk test and CTG repeats.
        Neuromuscul Disord. 2018; 28: 29-37https://doi.org/10.1016/j.nmd.2017.08.005
        • Lieber R.L.
        • Fridén J.
        Functional and clinical significance of skeletal muscle architecture.
        Muscle Nerve. 2000; 23: 1647-1666https://doi.org/10.1002/1097-4598(200011)23:11<1647::aid-mus1>3.0.co;2-m
        • Pons C.
        • Borotikar B.
        • Garetier M.
        • Burdin V.
        • Ben Salem D.
        • Lempereur M.
        • Brochard S
        Quantifying skeletal muscle volume and shape in humans using MRI: a systematic review of validity and reliability.
        PLoS ONE. 2018; 13e0207847https://doi.org/10.1371/journal.pone.0207847
        • Hiba B.
        • Richard N.
        • Hébert L.J.
        • Coté C.
        • Nejjari M.
        • Vial C.
        • et al.
        Quantitative assessment of skeletal muscle degeneration in patients with myotonic dystrophy type 1 using MRI.
        J Magn Reson Imaging. 2012; 35: 678-685https://doi.org/10.1002/jmri.22849
        • Turner C.
        • Hilton-Jones D
        The myotonic dystrophies: diagnosis and management.
        J Neurol Neurosurg Psychiatry. 2010; 81: 358-367https://doi.org/10.1136/jnnp.2008.158261
        • Odajima N.
        • Matsunaga T.
        • Furukawa T.
        • Tsukagoshi H.
        Distribution of skeletal muscle involvement in myotonic dystrophy-a computed tomographic study.
        Rinsho Shinkeigaku. 1990; 30: 707-712
        • Streib E.W.
        • Sun S.F.
        Distribution of electrical myotonia in myotonic muscular dystrophy.
        Ann Neurol. 1983; 14: 80-82https://doi.org/10.1002/ana.410140113
        • Sun S.F.
        • Streib E.W.
        Myotonic dystrophy: limited electromyographic abnormalities in 2 definite cases.
        Clin Genet. 1983; 23: 111-114
        • Odman C.
        • Kiliaridis S.
        Masticatory muscle activity in myotonic dystrophy patients.
        J Oral Rehabil. 1996; 23: 5-10https://doi.org/10.1111/j.1365-2842.1996.tb00804.x
        • Kiliaridis S.
        • Engvall M.
        • Tzakis M.G.
        Ultrasound imaging of the masseter muscle in myotonic dystrophy patients.
        J Oral Rehabil. 1995; 22: 619-625https://doi.org/10.1111/j.1365-2842.1995.tb01059.x
        • de Die-Smulders C.E.
        • Höweler C.J.
        • Thijs C.
        • Mirandolle J.F.
        • Anten H.B.
        • Smeets H.J.
        • et al.
        Age and causes of death in adult-onset myotonic dystrophy.
        Brain. 1998; 121: 1557-1563https://doi.org/10.1093/brain/121.8.1557
        • Zanoteli E.
        • Yamashita H.K.
        • Suzuki H.
        • Oliveira A.S.
        • Gabbai A.A.
        Temporomandibular joint and masticatory muscle involvement in myotonic dystrophy: a study by magnetic resonance imaging.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 94: 262-271https://doi.org/10.1067/moe.2002.124580
        • Franc D.T.
        • Muetzel R.L.
        • Robinson P.R.
        • Rodriguez C.P.
        • Dalton J.C.
        • Naughton C.E.
        • et al.
        Cerebral and muscle MRI abnormalities in myotonic dystrophy.
        Neuromuscul. Disord. 2012; 22: 483-491https://doi.org/10.1016/j.nmd.2012.01.003
        • Monckton D.G.
        • Wong L.J.
        • Ashizawa T.
        • Caskey C.T.
        Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses.
        Hum Mol Genet. 1995; 4: 1-8https://doi.org/10.1093/hmg/4.1.1
        • Yushkevich P.A.
        • Piven J.
        • Hazlett H.C.
        • Smith R.G.
        • Ho S.
        • Gee J.C.
        • Gerig G.
        User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability.
        Neuroimage. 2006; 31: 1116-1128https://doi.org/10.1016/j.neuroimage.2006.01.015
        • Farrugia M.E.
        • Robson M.
        • Clover L.
        • Anslow P.
        • Newsom-Davis J.
        • Kennett R.
        • et al.
        MRI and clinical studies of facial and bulbar muscle involvement in MuSK antibody-associated myasthenia gravis.
        Brain. 2006; 129: 1481-1492https://doi.org/10.1093/brain/awl095
        • James W.P.T.
        Research on obesity.
        Nutr Bull. 1977; 4: 187-190
        • Pomeroy E.
        • Macintosh A.
        • Wells J.C.K.
        • Cole T.J.
        • Stock J.T.
        Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: implications for estimating body mass and physique from the skeleton.
        Am J Phys Anthropol. 2018; 166: 56-69https://doi.org/10.1002/ajpa.23398
        • Loprinzi P.D.
        • Branscum A.
        • Hanks J.
        • Smit E.
        Healthy lifestyle characteristics and their joint association with cardiovascular disease biomarkers in US adults.
        Mayo Clin Proc. 2016; 91: 432
        • ACE
        What are the guidelines for percentage of body fat loss?.
        ACE, 2009 ([cited: 15/06/2022]. Available from)
        • Heo M.
        • Faith M.S.
        • Pietrobelli A.
        • Heymsfield S.B.
        Percentage of body fat cutoffs by sex, age, and race-ethnicity in the US adult population from NHANES 1999–2004.
        Am J Clin Nutr. 2012; 95: 594-602https://doi.org/10.3945/ajcn.111.025171
        • Cumming S.A.
        • Jimenez-Moreno C.
        • Okkersen K.
        • Wenninger S.
        • Daidj F.
        • Hogarth F.
        • et al.
        Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort.
        Neurology. 2019; 93: e995-e1009https://doi.org/10.1212/wnl.0000000000008056
        • Ranganathan P.
        • Pramesh C.S.
        • Aggarwal R.
        Common pitfalls in statistical analysis: measures of agreement.
        Perspect Clin Res. 2017; 8: 187-191https://doi.org/10.4103/picr.PICR_123_17
        • Tod E.
        • Bromley C.
        • Millard A.D.
        • Boyd A.
        • Mackie P.
        • McCartney G.
        Obesity in Scotland: a persistent inequality.
        Int J Equity Health. 2017; 16 (-135): 135https://doi.org/10.1186/s12939-017-0599-6
        • Dogan C.
        • De Antonio M.
        • Hamroun D.
        • Varet H.
        • Fabbro M.
        • Rougier F.
        • et al.
        Gender as a modifying factor influencing myotonic dystrophy type 1 phenotype severity and mortality: a nationwide multiple databases cross-sectional observational study.
        PLoS ONE. 2016; 11 (-e0148264)e0148264https://doi.org/10.1371/journal.pone.0148264
        • Koo T.K.
        • Li M.Y.
        A guideline of selecting and reporting intraclass correlation coefficients for reliability research.
        J Chiropr Med. 2016; 15: 155-163https://doi.org/10.1016/j.jcm.2016.02.012
        • Gagnon C.
        • Noreau L.
        • Moxley R.T.
        • Laberge L.
        • Jean S.
        • Richer L.
        • et al.
        Towards an integrative approach to the management of myotonic dystrophy type 1.
        J Neurol, Neurosurg Psychiatry. 2007; 78: 800https://doi.org/10.1136/jnnp.2006.107185
        • Bakke M.
        Mandibular elevator muscles: physiology, action, and effect of dental occlusion.
        Scand J Dent Res. 1993; 101: 314-331https://doi.org/10.1111/j.1600-0722.1993.tb01127.x
        • Ng H.P.
        • Foong K.W.C.
        • Ong S.H.
        • Goh P.S.
        • Huang S.
        • Liu J.
        • Nowinski W.L.
        Quantitative analysis of human masticatory muscles using magnetic resonance imaging.
        Dentomaxillofacial Radiol. 2009; 38: 224-230https://doi.org/10.1259/dmfr/75198413
        • Hsu C.W.
        • Shiau Y.Y.
        • Chen C.M.
        • Chen K.C.
        • Liu H.M.
        Measurement of the size and orientation of human masseter and medial pterygoid muscles.
        Proc Natl Sci Counc Repub China B. 2001; 25: 45-49
        • Goto T.K.
        • Tokumori K.
        • Nakamura Y.
        • Yahagi M.
        • Yuasa K.
        • Okamura K.
        • Kanda S.
        Volume changes in human masticatory muscles between jaw closing and opening.
        J. Dent Res. 2002; 81: 428-432https://doi.org/10.1177/154405910208100614
        • Volk G.F.
        • Karamyan I.
        • Klingner C.M.
        • Reichenbach J.R.
        • Guntinas-Lichius O.
        Quantitative magnetic resonance imaging volumetry of facial muscles in healthy patients with facial palsy. Plastic and reconstructive surgery.
        Glob Open. 2014; 2 (-e173): e173https://doi.org/10.1097/GOX.0000000000000128
        • Boom H.P.W.
        • van Spronsen P.H.
        • van Ginkel F.C.
        • van Schijndel R.A.
        • Castelijns J.A.
        • Tuinzing D.B.
        A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI.
        Arch Oral Biol. 2008; 53: 273-281https://doi.org/10.1016/j.archoralbio.2007.08.013
        • Kornblum C.
        • Lutterbey G.
        • Bogdanow M.
        • Kesper K.
        • Schild H.
        • Schröder R.
        • Wattjes M.P.
        Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study.
        J Neurol. 2006; 253: 753-761https://doi.org/10.1007/s00415-006-0111-5
        • Gagnon C.
        • Petitclerc É.
        • Kierkegaard M.
        • Mathieu J.
        • Duchesne É.
        • Hébert L.J
        A 9-year follow-up study of quantitative muscle strength changes in myotonic dystrophy type 1.
        J. Neurol. 2018; 81: 358https://doi.org/10.1007/s00415-018-8898-4
        • Hamano T.
        • Kawamura Y.
        • Mutoh T.
        • Hirayama M.
        • Kuriyama M.
        Muscle MRI in myotonic dystrophy type 1 with foot drop.
        Eur Neurol. 2010; 63: 144-148https://doi.org/10.1159/000280763
        • Hayashi K.
        • Hamano T.
        • Kawamura Y.
        • Kimura H.
        • Matsunaga A.
        • Ikawa M.
        • et al.
        Muscle MRI of the upper extremity in the myotonic dystrophy type 1.
        Eur Neurol. 2016; 76: 87-94https://doi.org/10.1159/000448328
        • Sugie K.
        • Sugie M.
        • Taoka T.
        • Tonomura Y.
        • Kumazawa A.
        • Izumi T.
        • et al.
        Characteristic MRI findings of upper limb muscle involvement in myotonic dystrophy type 1.
        PLoS ONE. 2015; 10e0125051https://doi.org/10.1371/journal.pone.0125051
        • Morales F.
        • Couto J.M.
        • Higham C.F.
        • Hogg G.
        • Cuenca P.
        • Braida C.
        • et al.
        Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity.
        Hum Mol Genet. 2012; 21: 3558-3567https://doi.org/10.1093/hmg/dds185
        • Heatwole C.
        • Bode R.
        • Johnson N.E.
        • Dekdebrun J.
        • Dilek N.
        • Eichinger K.
        • et al.
        Myotonic dystrophy health index: correlations with clinical tests and patient function.
        Muscle Nerve. 2016; 53: 183-190https://doi.org/10.1002/mus.24725
        • Vasilopoulos T.
        • Franz C.E.
        • Panizzon M.S.
        • Xian H.
        • Grant M.D.
        • Lyons M.J.
        • et al.
        Genetic architecture of the delis-Kaplan executive function system trail making test: evidence for distinct genetic influences on executive function.
        Neuropsychology. 2012; 26: 238-250https://doi.org/10.1037/a0026768
        • Bellini M.
        • Biagi S.
        • Stasi C.
        • Costa F.
        • Mumolo M.G.
        • Ricchiuti A.
        • Marchi S.
        Gastrointestinal manifestations in myotonic muscular dystrophy.
        World J Gastroenterol. 2006; 12: 1821-1828https://doi.org/10.3748/wjg.v12.i12.1821
        • Gutiérrez Gutiérrez G.
        • Díaz-Manera J.
        • Almendrote M.
        • Azriel S.
        • Eulalio Bárcena J.
        • Cabezudo García P.
        • et al.
        Clinical guide for the diagnosis and follow-up of myotonic dystrophy type 1, MD1 or Steinert's disease.
        Neurología (English Edition). 2020; 35: 185-206https://doi.org/10.1016/j.nrleng.2019.01.008
        • Maeda N.
        • Suwa T.
        • Ichikawa M.
        • Masuda T.
        • Kumegawa M.
        Effects of easily chewable diet and unilateral extraction of upper molars on the masseter muscle in developing mice.
        Acta Anat. 1990; 137 (Basel): 19-24https://doi.org/10.1159/000146852
        • Urushiyama T.
        • Akutsu S.
        • Miyazaki J.
        • Fukui T.
        • Diekwisch T.G.
        • Yamane A.
        Change from a hard to soft diet alters the expression of insulin-like growth factors, their receptors, and binding proteins in association with atrophy in adult mouse masseter muscle.
        Cell Tissue Res. 2004; 315: 97-105https://doi.org/10.1007/s00441-003-0787-0
        • Miehe B.
        • Fanghänel J.
        • Kubein-Meesenburg D.
        • Nägerl H.
        • Schwestka-Polly R.
        Masticatory musculature under altered occlusal relationships–a model study with experimental animals.
        Ann Anat. 1999; 181: 37-40https://doi.org/10.1016/s0940-9602(99)80084-3
        • Ciochon R.L.
        • Nisbett R.A.
        • Corruccini R.S.
        Dietary consistency and craniofacial development related to masticatory function in minipigs.
        J Craniofac Genet Dev Biol. 1997; 17: 96-102
        • Takasu H.
        • Matsunaga T.
        • Morita T.
        • Hiraba K.
        • Kuroki K.
        • Saito K.
        • Goto S.
        • et al.
        Changes in masseter muscle fibers by liquid diet rearing in rabbits and recovery by chewing of solid diet.
        Arch Oral Biol. 2019; 108104548https://doi.org/10.1016/j.archoralbio.2019.104548
        • He T.
        Craniofacial morphology and growth in the ferret: effects from alteration of masticatory function.
        Swed Dent J Suppl. 2004; : 1-72
        • Cumming S.A.
        • Hamilton M.J.
        • Robb Y.
        • Gregory H.
        • McWilliam C.
        • Cooper A.
        • et al.
        De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1.
        Eur J Hum Genet. 2018; 26: 1635-1647https://doi.org/10.1038/s41431-018-0156-9
      1. Ballester A., Koehorst E., Almendrote M., Martínez-Piñeiro A., Lucente G., Linares Pardo I., et al. A DM1 family with interruptions associated with atypical symptoms and late onset but not with a milder phenotype. 2019. 10.1002/humu.23932:

        • Mesbah S.
        • Shalaby A.M.
        • Stills S.
        • Soliman A.
        • Willhite A.
        • Harkema S.J.
        • et al.
        Correction: novel stochastic framework for automatic segmentation of human thigh MRI volumes and its applications in spinal cord injured individuals.
        PLoS ONE. 2019; 14e0219810https://doi.org/10.1371/journal.pone.0219810
        • Irmakci I.
        • Hussein S.
        • Savran A.
        • Kalyani R.R.
        • Reiter D.
        • Chia C.W.
        • et al.
        A novel extension to fuzzy connectivity for body composition analysis: applications in thigh, brain, and whole body tissue segmentation.
        IEEE Trans Biomed Eng. 2019; 66: 1069-1081https://doi.org/10.1109/TBME.2018.2866764
        • Vishnumurthy T.D.
        • Mohana H.S.
        • Meshram V.A.
        Automatic segmentation of brain MRI images and tumor detection using morphological techniques.
        in: Proceedings of the international conference on electrical, electronics, communication, computer and optimization techniques (ICEECCOT). 2016
        • Serag A.
        • Wilkinson A.G.
        • Telford E.J.
        • Pataky R.
        • Sparrow S.A.
        • Anblagan D.
        • et al.
        SEGMA: an automatic SEGMentation approach for human brain MRI using sliding window and random forests.
        Front Neuroinform. 2017; 11: 2https://doi.org/10.3389/fninf.2017.00002
        • Selvaganesan K.
        • Whitehead E.
        • DeAlwis P.M.
        • Schindler M.K.
        • Inati S.
        • Saad Z.S.
        • Nair G.
        • et al.
        Robust, atlas-free, automatic segmentation of brain MRI in health and disease.
        Heliyon. 2019; 5: e01226https://doi.org/10.1016/j.heliyon.2019.e01226
        • Kemnitz J.
        • Eckstein F.
        • Culvenor A.G.
        • Ruhdorfer A.
        • Dannhauer T.
        • Ring-Dimitriou S.
        • Wirth W.
        • et al.
        Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.
        MAGMA. 2017; 30: 489-503https://doi.org/10.1007/s10334-017-0622-3
      2. Ahmad E., Mcphee J., Degens H., Yap Moi H. Automatic segmentation of MRI human thigh muscles: combination of reliable and fast framework methods for quadriceps, femur and marrow segmentation. 2017. 10.1145/3208955.3208958.

        • Ghatas M.P.
        • Lester R.M.
        • Khan M.R.
        • Gorgey A.S.
        Semi-automated segmentation of magnetic resonance images for thigh skeletal muscle and fat using threshold technique after spinal cord injury.
        Neural Regen Res. 2018; 13: 1787-1795https://doi.org/10.4103/1673-5374.238623
        • Yang Y.X.
        • Chong M.S.
        • Tay L.
        • Yew S.
        • Yeo A.
        • Tan C.H.
        Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images.
        MAGMA. 2016; 29: 723-731https://doi.org/10.1007/s10334-016-0547-2
        • Makrogiannis S.
        • Serai S.
        • Fishbein K.W.
        • Schreiber C.
        • Ferrucci L.
        • Spencer R.G.
        Automated quantification of muscle and fat in the thigh from water-, fat-, and nonsuppressed MR images.
        J Magn Reson Imaging. 2012; 35: 1152-1161https://doi.org/10.1002/jmri.22842
        • Karlsson A.
        • Rosander J.
        • Romu T.
        • Tallberg J.
        • Grönqvist A.
        • Borga M.
        • Dahlqvist Leinhard O
        Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI.
        J Magn Reson Imaging. 2015; 41: 1558-1569https://doi.org/10.1002/jmri.24726
        • Ng H.P.
        • Ong S.H.
        • Liu J.
        • Huang S.
        • Foong K.W.C.
        • Goh P.S.
        • Nowinski W.L.
        3D segmentation and quantification of a masticatory muscle from MR data using patient-specific models and matching distributions.
        J Digit Imaging. 2009; 22: 449-462https://doi.org/10.1007/s10278-008-9132-1
        • Bonati U.
        • Hafner P.
        • Schädelin S.
        • Schmid M.
        • Naduvilekoot Devasia A.
        • Schroeder J.
        • et al.
        Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy.
        Neuromuscul Disord. 2015; 25: 679-685https://doi.org/10.1016/j.nmd.2015.05.006
      3. ClinicalTrials.gov. Magnetic resonance imaging and biomarkers for muscular dystrophy. 2019 [cited: 15/01/2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT01484678.

        • ClinicalTrials.gov
        Assessing clincal endpoints and biomarkers in myotonic dystrophy type 1 and type 2 (ASCEND-DM).
        ClinicalTrials.gov, 2020 ([cited: 15/01/2020]. Available from)