Advertisement

Characterization of the nicotinic acetylcholine receptor antibodies after an unexpected increase of antibody titer in thymoma associated myasthenia gravis patients

Published:August 10, 2022DOI:https://doi.org/10.1016/j.nmd.2022.08.003

      Highlights

      • Anti-nAChR autoAbs titer increased in sera of two TMG patients with stable symptoms.
      • The titer's increase correlated with an increase of non-anti-α1 autoAbs.
      • Immunotherapy modification when non-anti-α1 autoAbs increase might not be needed.

      Abstract

      Two thymoma-associated myasthenia gravis patients with chronic well-controlled disease but an unexpected increase in anti-nAChR autoantibodies titer are reported. The specificity of anti-nAChR autoantibodies directed against extracellular parts of the receptor was studied in order to investigate the discrepancy between clinical and immunological status. Analysis of the anti-nAChR autoantibodies recognizing the extracellular parts of the nAChR revealed that when the concentration of anti-nAChR autoantibodies titer increased both patients had non-anti-α1 autoantibodies. Since the clinical profile of both patients remained unchanged, the increase of non-anti-α1 autoantibodies did not affect the 2 patients’ disease progression. Thus, immunotherapy modification due to an increase of anti-nAChR autoantibodies titer could be erroneous and potentially harmful.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Verschuuren J.J.G.M.
        • Huijbers M.G.
        • Plomp J.J.
        • Niks E.H.
        • Molenaar P.C.
        • Martinez-Martinez P.
        • et al.
        Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4.
        Autoimmun Rev. 2013; 12: 918-923https://doi.org/10.1016/j.autrev.2013.03.001
        • Gilhus N.E.
        • Skeie G.O.
        • Romi F.
        • Lazaridis K.
        • Zisimopoulou P.
        • Tzartos S.
        Myasthenia gravis - autoantibody characteristics and their implications for therapy.
        Nat Rev Neurol. 2016; 12: 259-268https://doi.org/10.1038/nrneurol.2016.44
        • Buckley C.
        • Douek D.
        • Newsom-Davis J.
        • Vincent A.
        • Willcox N.
        Mature, long-lived CD4+ and CD8+ T cells are generated by the thymoma in myasthenia gravis.
        Ann Neurol. 2001; 50: 64-72https://doi.org/10.1002/ana.1017
        • Marx A.
        • Willcox N.
        • Leite M.I.
        • Chuang W.-.Y.
        • Schalke B.
        • Nix W.
        • et al.
        Thymoma and paraneoplastic myasthenia gravis.
        Autoimmunity. 2010; 43: 413-427https://doi.org/10.3109/08916930903555935
        • Romi F.
        • Gilhus N.E.
        • Varhaug J.E.
        • Myking A.
        • Aarli J.A.
        Disease severity and outcome in thymoma myasthenia gravis: a long-term observation study.
        Eur J Neurol. 2003; 10: 701-706https://doi.org/10.1046/j.1468-1331.2003.00678.x
        • De Rosa A
        • M Fornili
        • Tassoni M.M.
        • Guida M.
        • Baglietto L.
        • Petrucci L.
        • et al.
        Thymoma_associated myasthenia gravis: clinical features and predictive value of antiacetylcholine receptor antibodies in the risk of recurrence of thymoma.
        Thorac Cancer. 2020; 12: 106-113
        • Albuquerque E.X.
        • Pereira E.F.R.
        • Alkondon M.
        • Rogers S.W.
        Mammalian nicotinic acetylcholine receptors: from structure to function.
        Physiol Rev. 2009; 89: 73-120https://doi.org/10.1152/physrev.00015.2008
        • Rodríguez Cruz PM
        • Cossins J.
        • Beeson D.
        • Vincent A
        The neuromuscular junction in health and disease: molecular mechanisms governing synaptic formation and homeostasis.
        Front Mol Neurosci. 2020; 13610964https://doi.org/10.3389/fnmol.2020.610964
        • Le Novère N.
        • Corringer P.-.J.
        • Changeux J.-.P
        The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences.
        J Neurobiol. 2002; 53: 447-456https://doi.org/10.1002/neu.10153
        • Unwin N.
        Refined structure of the nicotinic acetylcholine receptor at 4A resolution.
        J Mol Biol. 2005; 346: 967-989https://doi.org/10.1016/j.jmb.2004.12.031
        • Tzartos S.J.
        • Lindstrom J.M.
        Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits.
        Proc Natl Acad Sci U S A. 1980; 77: 755-759https://doi.org/10.1073/pnas.77.2.755
        • Zisimopoulou P.
        • Lagoumintzis G.
        • Poulas K.
        • Tzartos S.J.
        Antigen-specific apheresis of human anti-acetylcholine receptor autoantibodies from myasthenia gravis patients’ sera using Escherichia coli-expressed receptor domains.
        J Neuroimmunol. 2008; 200: 133-141https://doi.org/10.1016/j.jneuroim.2008.06.002
        • Zouvelou V.
        • Michail M.
        • Belimezi M.
        • Zisimopoulou P.
        Subunit specificity of the acetylcholine receptor antibodies in double seropositive myasthenia gravis.
        Muscle Nerve. 2021; 63: E36-E37https://doi.org/10.1002/mus.27177
        • Michail M.
        • Zouvelou V.
        • Belimezi M.
        • Haroniti A.
        • Zouridakis M.
        • Zisimopoulou P.
        Analysis of nAChR Autoantibodies Against Extracellular Epitopes in MG Patients.
        Front Neurol. 2022; 13
        • Lindstrom J.M.
        • Seybold M.E.
        • Lennon V.A.
        • Whittingham S.
        • Duane D.D.
        Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value.
        Neurology. 1976; 26: 1054-1059https://doi.org/10.1212/wnl.26.11.1054
        • Vincent A.
        • Newsom-Davis J.
        Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays.
        J Neurol Neurosurg Psychiatry. 1985; 48: 1246-1252https://doi.org/10.1136/jnnp.48.12.1246
        • Kostelidou K.
        • Trakas N.
        • Tzartos S.J.
        Extracellular domains of the β, γ and ε subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: a combination of immunoadsorbents results in increased efficiency.
        J Neuroimmunol. 2007; 190: 44-52https://doi.org/10.1016/j.jneuroim.2007.07.018
        • Psaridi-Linardaki L.
        • Trakas N.
        • Mamalaki A.
        • Tzartos S.J.
        Specific immunoadsorption of the autoantibodies from myasthenic patients using the extracellular domain of the human muscle acetylcholine receptor α-subunit. Development of an antigen-specific therapeutic strategy.
        J Neuroimmunol. 2005; 159: 183-191https://doi.org/10.1016/j.jneuroim.2004.10.002
        • Obaid A.H.
        • Zografou C.
        • Vadysirisack D.D.
        • Munro-Sheldon B.
        • Fichtner M.L.
        • Roy B.
        • et al.
        Heterogeneity of acetylcholine receptor autoantibody–mediated complement activity in patients with myasthenia gravis.
        Neurol - Neuroimmunol Neuroinflammation. 2022; 9: e1169https://doi.org/10.1212/NXI.0000000000001169