Advertisement

264th ENMC International Workshop: Multi-system involvement in spinal muscular atrophy Hoofddorp, the Netherlands, November 19th – 21st 2021

      Highlights

      • SMA displays a multi-systemic involvement across different tissues and organs.
      • Non-neuronal manifestations may contribute to SMA pathology and symptoms.
      • Unknown multi-system mechanisms are under investigation in preclinical studies.
      • Novel phenotypes in treated patients warrant refined clinical monitoring and care.
      • Close interaction between patients, researchers and clinicians needs to be prioritized.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hamilton G.
        • Gillingwater T.H.
        Spinal muscular atrophy: going beyond the motor neuron.
        Trends Mol Med. 2013; 19: 40-50
        • Shababi M.
        • Lorson C.L.
        • Rudnik-Schoneborn S.S.
        Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease?.
        J Anat. 2014; 224: 15-28
        • Wirth B.
        Spinal muscular atrophy: in the challenge lies a solution.
        Trend Neurosci. 2021; 44: 306-322
        • Singh R.N.
        • Howell M.D.
        • Ottesen E.W.
        • Singh N.N.
        Diverse role of survival motor neuron protein.
        Biochim Biophys Acta Gene Regul Mech. 2017; 1860: 299-315
        • Chaytow H.
        • Huang Y.T.
        • Gillingwater T.H.
        • Faller K.M.E.
        The role of survival motor neuron protein (SMN) in protein homeostasis.
        Cell Mol Life Sci. 2018; 75: 3877-3894
        • Groen E.J.N.
        • Perenthaler E.
        • Courtney N.L.
        • Jordan C.Y.
        • Shorrock H.K.
        • van der Hoorn D.
        • et al.
        Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy.
        Hum Mol Genet. 2018; 27: 2851-2862
        • Walter L.M.
        • Koch C.E.
        • Betts C.A.
        • Ahlskog N.
        • Meijboom K.E.
        • van Westering T.L.E.
        • et al.
        Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice.
        Hum Mol Genet. 2018; 27: 3582-3597
        • Eaton S.L.
        • Roche S.L.
        • Llavero Hurtado M.
        • Oldknow K.J.
        • Farquharson C.
        • Gillingwater T.H.
        • et al.
        Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting.
        PLoS ONE. 2013; 8: e72457
        • Huang Y.T.
        • van der Hoorn D.
        • Ledahawsky L.M.
        • Motyl A.A.L.
        • Jordan C.Y.
        • Gillingwater T.H.
        • et al.
        Robust comparison of protein levels across tissues and throughout development using standardized quantitative western blotting.
        J Vis Exp. 2019;
        • Allardyce H.
        • Kuhn D.
        • Hernandez-Gerez E.
        • Hensel N.
        • Huang Y.T.
        • Faller K.
        • et al.
        Renal pathology in a mouse model of severe Spinal Muscular Atrophy is associated with downregulation of Glial Cell-Line Derived Neurotrophic Factor (GDNF).
        Hum Mol Genet. 2020; 29: 2365-2378
        • Nery F.C.
        • Siranosian J.J.
        • Rosales I.
        • Deguise M.O.
        • Sharma A.
        • Muhtaseb A.W.
        • et al.
        Impaired kidney structure and function in spinal muscular atrophy.
        Neurol Genet. 2019; 5: e353
        • Martinez-Hernandez R.
        • Soler-Botija C.
        • Also E.
        • Alias L.
        • Caselles L.
        • Gich I.
        • et al.
        The developmental pattern of myotubes in spinal muscular atrophy indicates prenatal delay of muscle maturation.
        J Neuropathol Exp Neurol. 2009; 68: 474-481
        • Martinez-Hernandez R.
        • Bernal S.
        • Alias L.
        • Tizzano E.F.
        Abnormalities in early markers of muscle involvement support a delay in myogenesis in spinal muscular atrophy.
        J Neuropathol Exp Neurol. 2014; 73: 559-567
        • Ling K.K.
        • Gibbs R.M.
        • Feng Z.
        • Ko C.P.
        Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy.
        Hum Mol Genet. 2012; 21: 185-195
        • Martinez-Hernandez R.
        • Bernal S.
        • Also-Rallo E.
        • Alias L.
        • Barcelo M.J.
        • Hereu M.
        • et al.
        Synaptic defects in type I spinal muscular atrophy in human development.
        J Pathol. 2013; 229: 49-61
        • Bowerman M.
        • Swoboda K.J.
        • Michalski J.P.
        • Wang G.S.
        • Reeks C.
        • Beauvais A.
        • et al.
        Glucose metabolism and pancreatic defects in spinal muscular atrophy.
        Ann Neurol. 2012; 72: 256-268
        • Bowerman M.
        • Michalski J.P.
        • Beauvais A.
        • Murray L.M.
        • DeRepentigny Y.
        • Kothary R.
        Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology.
        Hum Mol Genet. 2014; 23: 3432-3444
        • Wood M.J.A.
        • Talbot K.
        • Bowerman M.
        Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape.
        Hum Mol Genet. 2017; 26: R151-R159
        • Hernandez-Gerez E.
        • Dall'Angelo S.
        • Collinson J.M.
        • Fleming I.N.
        • Parson S.H.
        Widespread tissue hypoxia dysregulates cell and metabolic pathways in SMA.
        Ann Clin Transl Neurol. 2020; 7: 1580-1593
        • Hensel N.
        • Kubinski S.
        • Claus P.
        The need for SMN-independent treatments of spinal muscular atrophy (SMA) to complement SMN-enhancing drugs.
        Front Neurol. 2020; 11: 45
        • Hensel N.
        • Brickwedde H.
        • Tsaknakis K.
        • Grages A.
        • Braunschweig L.
        • Luders K.A.
        • et al.
        Altered bone development with impaired cartilage formation precedes neuromuscular symptoms in spinal muscular atrophy.
        Hum Mol Genet. 2020; 29: 2662-2673
        • Motyl A.A.L.
        • Faller K.M.E.
        • Groen E.J.N.
        • Kline R.A.
        • Eaton S.L.
        • Ledahawsky L.M.
        • et al.
        Pre-natal manifestation of systemic developmental abnormalities in spinal muscular atrophy.
        Hum Mol Genet. 2020; 29: 2674-2683
        • Lancaster M.A.
        • Renner M.
        • Martin C.A.
        • Wenzel D.
        • Bicknell L.S.
        • Hurles M.E.
        • et al.
        Cerebral organoids model human brain development and microcephaly.
        Nature. 2013; 501: 373-379
        • Andersen J.
        • Revah O.
        • Miura Y.
        • Thom N.
        • Amin N.D.
        • Kelley K.W.
        • et al.
        Generation of functional human 3D cortico-motor assembloids.
        Cell. 2020; 183 (e26): 1913-1929
        • Masson R.
        • Brusa C.
        • Scoto M.
        • Baranello G.
        Brain, cognition, and language development in spinal muscular atrophy type 1: a scoping review.
        Dev Med Child Neurol. 2021; 63: 527-536
        • Ramos D.M.
        • d'Ydewalle C.
        • Gabbeta V.
        • Dakka A.
        • Klein S.K.
        • Norris D.A.
        • et al.
        Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment.
        J Clin Invest. 2019; 129: 4817-4831
        • De Amicis R.
        • Baranello G.
        • Foppiani A.
        • Leone A.
        • Battezzati A.
        • Bedogni G.
        • et al.
        Growth patterns in children with spinal muscular atrophy.
        Orphanet J Rare Dis. 2021; 16: 375
        • Brener A.
        • Sagi L.
        • Shtamler A.
        • Levy S.
        • Fattal-Valevski A.
        • Lebenthal Y.
        Insulin-like growth factor-1 status is associated with insulin resistance in young patients with spinal muscular atrophy.
        Neuromuscul Disord. 2020; 30: 888-896
        • Montes J.
        • Goodwin A.M.
        • McDermott M.P.
        • Uher D.
        • Hernandez F.M.
        • Coutts K.
        • et al.
        Diminished muscle oxygen uptake and fatigue in spinal muscular atrophy.
        Ann Clin Transl Neurol. 2021; 8: 1086-1095
        • Ripolone M.
        • Ronchi D.
        • Violano R.
        • Vallejo D.
        • Fagiolari G.
        • Barca E.
        • et al.
        Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy.
        JAMA Neurol. 2015; 72: 666-675
        • Orngreen M.C.
        • Zacho M.
        • Hebert A.
        • Laub M.
        • Vissing J.
        Patients with severe muscle wasting are prone to develop hypoglycemia during fasting.
        Neurology. 2003; 61: 997-1000
        • Wijngaarde C.A.
        • Blank A.C.
        • Stam M.
        • Wadman R.I.
        • van den Berg L.H.
        • van der Pol W.L.
        Cardiac pathology in spinal muscular atrophy: a systematic review.
        Orphanet J Rare Dis. 2017; 12: 67
        • Kong L.
        • Valdivia D.O.
        • Simon C.M.
        • Hassinan C.W.
        • Delestree N.
        • Ramos D.M.
        • et al.
        Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA.
        Sci Transl Med. 2021; 13
        • de Borba F.C.
        • Querin G.
        • Franca Jr., M.C.
        • Pradat P.F.
        Cerebellar degeneration in adult spinal muscular atrophy patients.
        J Neurol. 2020; 267: 2625-2631
        • Kizina K.
        • Akkaya Y.
        • Jokisch D.
        • Stolte B.
        • Totzeck A.
        • Munoz-Rosales J.
        • et al.
        Cognitive impairment in adult patients with 5q-associated spinal muscular atrophy.
        Brain Sci. 2021; 11
        • Mercuri E.
        • Finkel R.S.
        • Muntoni F.
        • Wirth B.
        • Montes J.
        • Main M.
        • et al.
        Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care.
        Neuromuscul Disord. 2018; 28: 103-115
        • Finkel R.S.
        • Mercuri E.
        • Meyer O.H.
        • Simonds A.K.
        • Schroth M.K.
        • Graham R.J.
        • et al.
        Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics.
        Neuromuscul Disord. 2018; 28: 197-207
        • Chand D.
        • Mohr F.
        • McMillan H.
        • Tukov F.F.
        • Montgomery K.
        • Kleyn A.
        • et al.
        Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy.
        J Hepatol. 2021; 74: 560-566
        • Chand D.H.
        • Zaidman C.
        • Arya K.
        • Millner R.
        • Farrar M.A.
        • Mackie F.E.
        • et al.
        Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series.
        J Pediatr. 2021; 231: 265-268
        • Day J.W.
        • Mendell J.R.
        • Mercuri E.
        • Finkel R.S.
        • Strauss K.A.
        • Kleyn A.
        • et al.
        Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy.
        Drug Saf. 2021; 44: 1109-1119
        • Lemoine M.
        • Gomez M.
        • Grimaldi L.
        • Urtizberea J.A.
        • Quijano-Roy S.
        [The SMA France national registry: already encouraging results].
        Med Sci (Paris). 1. 2021: 25-29 (37 Hors serie n degrees)
        • Witte D.
        • Hartmann H.
        • Drube J.
        • Haffner D.
        • Illsinger S.
        [Thrombotic microangiopathy (TMA) after gene replacemant therapy (GRT) due to spinal muscular atrophy: case summary and recommendations for treatment].
        Klin Padiatr. 2022; 234: 42-47
        • Yazaki K.
        • Sakuma S.
        • Hikita N.
        • Fujimaru R.
        • Hamazaki T.
        Child neurology: pathologically confirmed thrombotic microangiopathy caused by onasemnogene abeparvovec treatment for SMA.
        Neurology. 2022; 98: 808-813
        • Somers E.
        • Lees R.
        • Hoban K.
        • Sleigh J.
        • Zhou H.
        • Muntoni F.
        • et al.
        Vascular Defects and Spinal Cord Hypoxia in Spinal Muscular Atrophy.
        Annals of Neurology. 2016; 79: 217-230