Advertisement

Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands

Published:April 30, 2021DOI:https://doi.org/10.1016/j.nmd.2021.04.003

      Highlights

      • First workshop on the road to therapy for MDC1A
      • Trial readiness for MDC1A/LAMA2-MD: clinical spectrum and natural history
      • Novel therapeutic strategies for MDC1A/LAMA2-MD
      • Majority of international experts participated
      • Intense interaction with patients, relatives and caretakers

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Durbeej M.
        Laminin-α2 chain-deficient congenital muscular dystrophy. Pathophysiology and development of treatment.
        Curr Top Membr. 2015; 76: 31-60https://doi.org/10.1016/bs.ctm.2015.05.002
        • Topaloğlu H
        • Yalaz K
        • Renda Y
        • Kale G
        • Çağlar M
        • Göğüş S.
        Congenital muscular dystrophy (non-fukuyama type) in Turkey: a clinical and pathological evaluation.
        Brain Dev. 1989; 11: 341-344https://doi.org/10.1016/S0387-7604(89)80066-X
        • Sframeli M
        • Sarkozy A
        • Bertoli M
        • Astrea G
        • Hudson J
        • Scoto M
        • et al.
        Congenital muscular dystrophies in the UK population: clinical and molecular spectrum of a large cohort diagnosed over a 12-year period.
        Neuromuscul Disord. 2017; 27: 793-803https://doi.org/10.1016/j.nmd.2017.06.008
        • Zambon AA
        • Ridout D
        • Main M
        • Mein R
        • Phadke R
        • Muntoni F
        • et al.
        LAMA2-related muscular dystrophy: natural history of a large pediatric cohort.
        Ann Clin Transl Neurol. 2020; 7: 1870-1882https://doi.org/10.1002/acn3.51172
        • Jain MS
        • Meilleur K
        • Kim E
        • Norato G
        • Waite M
        • Nelson L
        • et al.
        Longitudinal changes in clinical outcome measures in COL6-related dystrophies and LAMA2-related dystrophies.
        Neurology. 2019; 93: E1932-E1943https://doi.org/10.1212/WNL.0000000000008517
        • Van Der Knaap MS
        • Smit LME
        • Barth PG
        • Catsman-Berrevoets CE
        • Brouwer OF
        • Begeer JH
        • et al.
        Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities.
        Ann Neurol. 1997; 42: 50-59https://doi.org/10.1002/ana.410420110
        • Willmann R
        • Buccella F
        • De Luca A
        • Grounds MD
        • Versnel J
        • Vroom E
        • et al.
        227th ENMC international workshop: finalizing a plan to guarantee quality in translational research for neuromuscular diseases Heemskerk, Netherlands.
        (10–11 February 2017)Neuromuscul. Disord., vol. 28. Elsevier Ltd, 2018: 185-192https://doi.org/10.1016/j.nmd.2017.11.002
        • Fontes-Oliveira CC
        • Steinz M
        • Schneiderat P
        • Mulder H
        • Durbeej M.
        Bioenergetic impairment in congenital muscular dystrophy type 1A and leigh syndrome muscle cells.
        Sci Rep. 2017; 7https://doi.org/10.1038/srep45272
        • De Oliveira BM
        • Matsumura CY
        • Fontes-Oliveira CC
        • Gawlik KI
        • Acosta H
        • Wernhoff P
        • et al.
        Quantitative proteomic analysis reveals metabolic alterations, calcium dysregulation, and increased expression of extracellular matrix proteins in Laminin α2 Chain-deficient muscle.
        Mol Cell Proteomics. 2014; 13: 3001-3013https://doi.org/10.1074/mcp.M113.032276
        • Häger M
        • Bigotti MG
        • Meszaros R
        • Carmignac V
        • Holmberg J
        • Allamand V
        • et al.
        Cib2 binds integrin α7Bβ1D and is reduced in laminin α2 chain-deficient muscular dystrophy.
        J Biol Chem. 2008; 283: 24760-24769https://doi.org/10.1074/jbc.M801166200
        • Fontes-Oliveira CC
        • M. Soares Oliveira B
        • Körner Z
        • M. Harandi V
        • Durbeej M
        Effects of metformin on congenital muscular dystrophy type 1A disease progression in mice: a gender impact study.
        Sci Rep. 2018; 8: 1-15https://doi.org/10.1038/s41598-018-34362-2
        • Harandi VM
        • Oliveira BMS
        • Allamand V
        • Friberg A
        • Fontes-Oliveira CC
        • Durbeej M.
        Antioxidants reduce muscular dystrophy in the dy2J/dy2J mouse model of laminin α2 chain-deficient muscular dystrophy.
        Antioxidants. 2020; 9https://doi.org/10.3390/antiox9030244
        • Accorsi A
        • Cramer ML
        • Girgenrath M.
        Fibrogenesis in LAMA2-related muscular dystrophy is a central tenet of disease etiology.
        Front Mol Neurosci. 2020; 13https://doi.org/10.3389/fnmol.2020.00003
        • Yurchenco PD
        • McKee KK.
        Linker protein repair of LAMA2 dystrophic neuromuscular basement membranes.
        Front Mol Neurosci. 2019; 12https://doi.org/10.3389/fnmol.2019.00305
        • Moll J
        • Barzaghi P
        • Lin S
        • Bezakova G
        • Lochmüller H
        • Engvall E
        • et al.
        An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy.
        Nature. 2001; 413: 302-307https://doi.org/10.1038/35095054
        • Domi T
        • Porrello E
        • Velardo D
        • Capotondo A
        • Biffi A
        • Tonlorenzi R
        • et al.
        Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A.
        Skelet Muscle. 2015; 5https://doi.org/10.1186/s13395-015-0055-5
        • Kemaladewi DU
        • Maino E
        • Hyatt E
        • Hou H
        • Ding M
        • Place KM
        • et al.
        Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism.
        Nat Med. 2017; 23: 984-989https://doi.org/10.1038/nm.4367
        • Kemaladewi DU
        • Bassi PS
        • Erwood S
        • Al-Basha D
        • Gawlik KI
        • Lindsay K
        • et al.
        A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene.
        Nature. 2019; 572: 125-130https://doi.org/10.1038/s41586-019-1430-x
        • Cossu G
        • Previtali SC
        • Napolitano S
        • Cicalese MP
        • Tedesco FS
        • Nicastro F
        • et al.
        Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy.
        EMBO Mol Med. 2016; 8: 1470-1471https://doi.org/10.15252/emmm.201607129
        • Van Tienen F
        • Zelissen R
        • Timmer E
        • Van Gisbergen M
        • Lindsey P
        • Quattrocelli M
        • et al.
        Healthy, mtDNA-mutation free mesoangioblasts from mtDNA patients qualify for autologous therapy.
        Stem Cell Res Ther. 2019; 10: 405https://doi.org/10.1186/s13287-019-1510-8
        • Erb M
        • Meinen S
        • Barzaghi P
        • Sumanovski LT
        • Courdier-Früh I
        • Rüegg MA
        • et al.
        Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-α2 deficiency.
        J Pharmacol Exp Ther. 2009; 331: 787-795https://doi.org/10.1124/jpet.109.160754
        • Yu Q
        • Sali A
        • van der Meulen J
        • Creeden BK
        • Gordish-Dressman H
        • Rutkowski A
        • et al.
        Omigapil treatment decreases fibrosis and improves respiratory rate in dy2J mouse model of congenital muscular dystrophy.
        PLoS One. 2013; 8https://doi.org/10.1371/journal.pone.0065468
        • Sawnani H
        • Mayer OH
        • Modi AC
        • Pascoe JE
        • McConnell K
        • McDonough JM
        • et al.
        Randomized trial of lung hyperinflation therapy in children with congenital muscular dystrophy.
        Pediatr Pulmonol. 2020; 55: 2471-2478https://doi.org/10.1002/ppul.24954
        • Oliveira J
        • Gruber A
        • Cardoso M
        • Taipa R
        • Fineza I
        • Gonçalves A
        • et al.
        LAMA2 gene mutation update: toward a more comprehensive picture of the laminin-α2 variome and its related phenotypes.
        Hum Mutat. 2018; 39: 1314-1337https://doi.org/10.1002/humu.23599