Advertisement

Presynaptic congenital myasthenic syndrome due to three novel mutations in SLC5A7 encoding the sodium-dependant high-affinity choline transporter

Published:October 19, 2020DOI:https://doi.org/10.1016/j.nmd.2020.10.006

      Highlights

      • This report provides three novel pathogenic variants in SLC5A7 causing CMS type 20.
      • CMS type 20 is remarkably variable in clinical phenotype, severity and prognosis.
      • Additional treatment with β2-adrenergic agonists may be useful in some patients.

      Abstract

      SLC5A7 encodes the presynaptic sodium-dependant high-affinity choline transporter 1 (CHT), which uptakes choline to the presynaptic nerve terminal following the breakdown of acetylcholine by the acetylcholinesterase within the synaptic cleft. We report 5 patients from three consanguineous families with congenital myasthenic syndrome type 20 caused by novel mutations in SLC5A7. The individuals from family 1 and 2 were homozygous for c.320G>A; (p.Arg107His) and c.886G>A (p.Ala296Thr), respectively, and their phenotype was characterised by recurrent apnoeic attacks early after birth and learning and speech difficulties in childhood. Individuals from family 3 were homozygous for c.1240T>A (p.Tyr414Asn) and suffered from more severe central and peripheral manifestations with lack of spontaneous movements and respiratory drive and overall minimal response to external stimuli. All individuals tested showed neurophysiological defects compatible with impaired neuromuscular transmission. Combined treatment with cholinesterase inhibitors and β2-adrenergic agonists was beneficial in patients from family 1 and 2. Affected individuals from family 3 died from complications directly related to their underlying genetic condition. This report provides three novel pathogenic variants in SLC5A7 and highlights the variability in the clinical phenotype, severity and prognosis of this syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rodríguez Cruz P.
        • Palace J.
        • Beeson D.
        The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes.
        Int J Mol Sci. 2018; 19: 1677
        • Bauché S.
        • O'Regan S.
        • Azuma Y.
        • Laffargue F.
        • McMacken G.
        • Sternberg D.
        • et al.
        Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea.
        Am J Hum Genet. 2016; 99: 753-761
        • O'Grady G.L.
        • Verschuuren C.
        • Yuen M.
        • Webster R.
        • Menezes M.
        • Fock J.M.
        • et al.
        Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome.
        Neurology. 2016; 87: 1442-1448
        • Herrmann D.N.
        • Horvath R.
        • Sowden J.E.
        • Gonzalez M.
        • Gonzales M.
        • Sanchez-Mejias A.
        • et al.
        Synaptotagmin 2 mutations cause an autosomal-dominant form of lambert-eaton myasthenic syndrome and nonprogressive motor neuropathy.
        Am J Hum Genet. 2014; 95: 332-339
        • Shen X.
        • Brengman J.
        • Engel A.G.
        Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability.
        Neurology. 2014; 83: 2247-2255
        • O'Connor E.
        • Töpf A.
        • Müller J.S.
        • Cox D.
        • Evangelista T.
        • Colomer J.
        • et al.
        Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome.
        Brain. 2016; 139: 2143-2153
        • McMacken G.
        • Whittaker R.G.
        • Evangelista T.
        • Abicht A.
        • Dusl M.
        • Lochmüller H.
        Congenital myasthenic syndrome with episodic apnoea: clinical, neurophysiological and genetic features in the long-term follow-up of 19 patients.
        J Neurol. 2018; 265: 194-203
        • Okuda T.
        • Haga T.
        • Kanai Y.
        • Endou H.
        • Ishihara T.
        Identification and characterization of the high-affinity choline transporter.
        Nat Neurosci. 2000; 3: 120-125
        • Okuda T.
        • Osawa C.
        • Yamada H.
        • Hayashi K.
        • Nishikawa S.
        • Ushio T.
        • et al.
        Transmembrane topology and oligomeric structure of the high-affinity choline transporter.
        J Biol Chem. 2012; 287: 42826-42834
        • Ferguson S.M.
        • Bazalakova M.
        • Savchenko V.
        • Tapia J.C.
        • Wright J.
        • Blakely R.D.
        Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice.
        Proc Natl Acad Sci. 2004; 101: 8762-8767
        • Wang H.
        • Salter C.G.
        • Refai O.
        • Hardy H.
        • Barwick K.E.S.
        • Akpulat U.
        • et al.
        Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization.
        Brain. 2017; 140: 2838-2850
        • Sim N.-.L.
        • Kumar P.
        • Hu J.
        • Henikoff S.
        • Schneider G.
        • Ng P.C.
        SIFT web server: predicting effects of amino acid substitutions on proteins.
        Nucleic Acids Res. 2012; 40: W452-W457
        • Adzhubei I.A.
        • Schmidt S.
        • Peshkin L.
        • Ramensky V.E.
        • Gerasimova A.
        • Bork P.
        • et al.
        A method and server for predicting damaging missense mutations.
        Nat Methods. 2010; 7: 248
        • Schwarz J.M.
        • Rödelsperger C.
        • Schuelke M.
        • Seelow D.
        MutationTaster evaluates disease-causing potential of sequence alterations.
        Nat Methods. 2010; 7: 575
        • Reva B.
        • Antipin Y.
        • Sander C.
        Determinants of protein function revealed by combinatorial entropy optimization.
        Genome Biol. 2007; 8: R232
        • Shihab H.A.
        • Gough J.
        • Cooper D.N.
        • Stenson P.D.
        • Barker G.L.A.
        • Edwards K.J.
        • et al.
        Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.
        Hum Mutat. 2013; 34: 57-65
        • Shihab H.A.
        • Rogers M.F.
        • Gough J.
        • Mort M.
        • Cooper D.N.
        • Day I.N.M.
        • et al.
        An integrative approach to predicting the functional effects of non-coding and coding sequence variation.
        Bioinformatics. 2015; 31: 1536-1543
        • Liu X.
        • Wu C.
        • Li C.
        • Boerwinklke E.
        dbNSFP v3.0: a one-stop database of functional predictions and annotations for human non-synonymous and splice site SNVs.
        Hum Mutat. 2016; 37: 235-241
        • Lek M.
        • Karczewski K.J.
        • Minikel E V.
        • Samocha K.E.
        • Banks E.
        • Fennell T.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Larcher V.
        • Craig F.
        • Bhogal K.
        • Wilkinson D.
        • Brierley J.
        Making decisions to limit treatment in life-limiting and life-threatening conditions in children: a framework for practice.
        Arch Dis Child. 2015; 100: s1 LP-s23
        • Pardal-Fernández J.M.
        • Carrascosa-Romero M.C.
        • Álvarez S.
        • Medina-Monzón M.C.
        • Caamaño M.B.
        • de Cabo C.
        A new severe mutation in the SLC5A7 gene related to congenital myasthenic syndrome type 20.
        Neuromuscul Disord. 2018; 28: 881-884
        • Banerjee M.
        • Arutyunov D.
        • Brandwein D.
        • Janetzki-Flatt C.
        • Kolski H.
        • Hume S.
        • et al.
        The novel p.Ser263Phe mutation in the human high-affinity choline transporter 1 (CHT1/SLC5A7) causes a lethal form of fetal akinesia syndrome.
        Hum Mutat. 2019; 40: 1676-1683
        • Kus L.
        • Borys E.
        • Ping Chu Y.
        • Ferguson S.M.
        • Blakely R.D.
        • Emborg M.E.
        • et al.
        Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system.
        J Comp Neurol. 2003; 463: 341-357
        • Ohno K.
        • Tsujino A.
        • Brengman JM
        • Harper CM
        • Bajzer Z
        • Udd B
        • et al.
        Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans.
        Proc Natl Acad Sci USA. 2001; 98: 2017-2022
        • Burke G.
        • Cossins J.
        • Maxwell S.
        • Robb S.
        • Nicolle M.
        • Vincent A.
        • et al.
        Distinct phenotypes of congenital acetylcholine receptor deficiency.
        Neuromuscul Disord. 2004; 14: 356-364
        • Palace J.
        • Lashley D.
        • Bailey S.
        • Jayawant S.
        • Carr A.
        • McConville J.
        • et al.
        Clinical features in a series of fast channel congenital myasthenia syndrome.
        Neuromuscul Disord. 2012; 22: 112-117
        • Salter C.G.
        • Beijer D.
        • Hardy H.
        • Barwick K.E.S.
        • Bower M.
        • Mademan I.
        • et al.
        Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies.
        Neurol Genet. 2018; 4: 1-8
        • Dong C.
        • Wei P.
        • Jian X.
        • Gibbs R.
        • Boerwinkle E.
        • Wang K.
        • et al.
        Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.
        Hum Mol Genet. 2015; 24: 2125-2137
        • Clausen L.
        • Cossins J.
        • Beeson D.
        Beta-2 adrenergic receptor agonists enhance AChR clustering in C2C12 myotubes: implications for therapy of myasthenic disorders.
        J Neuromuscul Dis. 2018; 5: 231-240
        • McMacken G.M.
        • Spendiff S.
        • Whittaker R.G.
        • O'Connor E.
        • Howarth R.M.
        • Boczonadi V.
        • et al.
        Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome.
        Hum Mol Genet. 2019; 28: 2339-2351
        • Vanhaesebrouck A.
        • Webster R.
        • Maxwell S.
        • Rodríguez Cruz P.
        • Cossins J.
        • Wickens J.
        • et al.
        β2-adrenergic agonists ameliorate the adverse effect of long-term pyridostigmine on neuromuscular junction structure.
        Brain. 2019; 142: 3713-3727
        • Choudhary P.
        • Armstrong E.J.
        • Jorgensen C.C.
        • Piotrowski M.
        • Barthmes M.
        • Torella R.
        • et al.
        Discovery of compounds that positively modulate the high affinity choline transporter.
        Front Mol Neurosci. 2017; 10: 1-17
        • Omasits U.
        • Ahrens C.H.
        • Müller S.
        • Wollscheid B.
        Protter: interactive protein feature visualization and integration with experimental proteomic data.
        Bioinformatics. 2013; 30: 884-886