Advertisement

Pathogenic variants in COL6A3 cause Ullrich-like congenital muscular dystrophy in young Labrador Retriever dogs

Published:April 16, 2020DOI:https://doi.org/10.1016/j.nmd.2020.03.005

      Highlights

      • Whole genome and Sanger sequencing resulted in the discovery of new collagen VI variants.
      • Autosomal recessive and dominant pathogenic variants identified affecting COL6A3.
      • Hyperlaxity and contracture of distal joints were similar to the human phenotype.
      • Canine condition has direct correlations to corresponding human condition.

      Abstract

      The collagen VI-related muscular dystrophies in people include a broad spectrum of diseases ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Clinical features are attributable to both muscle and connective tissue and include progressive muscle weakness and respiratory failure, hyperlaxity of distal joints, and progressive contracture of large joints. Here we describe two different COL6A3 pathogenic variants in Labrador Retriever dogs that result in autosomal recessive or autosomal dominant congenital myopathies with hyperlaxity of distal joints and joint contracture, similar to the condition in people.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bonneman C.G.
        The collagen VI-related myopathies: muscle meets matrix.
        Nat Rev Neurol. 2011; 7: 379-390https://doi.org/10.1038/nrneurol.2011.81
        • Allamand V.
        • Briñas L.
        • Richard P.
        • Stojkovic T.
        • Quijano-Roy S.
        • Bonne G.
        Col VI myopathies: where do stand, where do we go.
        Skelet Muscle. 2011; 1: 30https://doi.org/10.1186/2044-5040-1-30
        • Norwood F.L.
        • Harling C.
        • Chinnery P.F.
        • Eagle M.
        • Bushby K.
        • Straub V.
        Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population.
        Brain. 2009; 32: 3175-3186https://doi.org/10.1093/brain/awp236
        • Steffen F.
        • Bilzer T.
        • Brands J.
        • Golini L.
        • Jagannathan V.
        • Weidmer M.
        • et al.
        A nonsense variant in COL6A1 in Landseer dogs with muscular dystrophy.
        G3 (Bethesda). 2015; 5: 2611-2617https://doi.org/10.1534/g3.115.021923
        • Marioni-Henry K.
        • Haworth P.
        • Scott H.
        • Witte P.
        • Guo L.T.
        • Shelton G.D.
        Sarcolemmal specific collagen VI deficient myopathy in a Labrador retRiever.
        J Vet Intern Med. 2014; 28: 243-249
        • Smith B.F.
        • Kornegay J.N.
        • Duan D.
        Independent canine models of Duchenne muscular dystrophy due tointronic insertions of repetitive DNA.
        Mol Ther. 2007; 15: S51
        • Vieira N.M.
        • Guo L.T.
        • Estrela E.
        • Kunkel L.M.
        • Zatz M.
        • Shelton G.D.
        Muscular dystrophy in a family of Labrador Retrievers with no muscle dystrophin and a mild phenotype.
        Neurouscul Disord. 2015; 25: 363-370
        • Beggs A.H.
        • Böhm J.
        • Snead E.
        • Kozlowski M.
        • Maurer M.
        • Minor K.
        • et al.
        MTM1 mutation associated with X-linked myotubular myopathy in Labrador retrievers.
        Proc Natl Acad Sci USA. 2010; 107: 14697-14702https://doi.org/10.1073/pnas.1003677107
        • Snead E.C.
        • Taylor S.M.
        • van der Kooij M.
        • Cosford K.
        • Beggs A.H.
        • Shelton G.D.
        Clinical phenotype of X-linked myotubular myopathy in Labrador rretriever puppies.
        J Vet Intern Med. 2015; 29 (Epub 2015 Jan 8): 254-260https://doi.org/10.1111/jvim.12513
        • Pelé M.
        • Tiret L.
        • Kessler J.L.
        • Blot S.
        • Panthier J.J.
        SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs.
        Hum Mol Genet. 2005; 14 (Epub 2005 Apr 13. Erratum in: Hum Mol Genet. 2005 Jul 1;14(13):1905-6): 1417-1427
        • Maurer M.
        • Mary J.
        • Guillaud L.
        • Fender M.
        • Pele M.
        • Bilzer T.
        • et al.
        Centronuclear myopathy in Labrador retrievers: a recent founder mutation in the PTPLA gene has rapidly disseminated worldwide.
        PLoS One. 2012; 7 (Epub 2012 Oct 5): e46408https://doi.org/10.1371/journal.pone.0046408
        • Rinz C.J.
        • Levine J.
        • Minor K.M.
        • Humphries H.D.
        • Lara R.
        • Starr-Moss A.N.
        • et al.
        A COLQ missense mutation in Labrador Retrievers having congenital myasthenic syndrome.
        PLoS One. 2014; 9 (doi:)e106425https://doi.org/10.1371/journal.pone.0106425
        • Dubowitz V.
        • Sewry C.A.
        • Oldfors A.
        Histological and histochemical stains and reactions.
        in: Dubowitz V. Sewry CA Oldfors A Muscle biopsy: a practical approach. 4th ed. Saunders Elsevier, Oxford2013: 16-27
        • Guo L.T.
        • Moore S.A.
        • Forcales S.
        • Engvall E.
        • Shelton G.D.
        Evaluation of commercial dysferlin antibodies on canine, mouse and human skeletal muscle.
        Neuromuscul Disord. 2010; 20: 820-825
        • Hessle H.
        • Engvall E.
        Type VI collagen. Studies on its localization, structure, and biosynthetic form with monoclonal antibodies.
        J Biol Chem. 1984; 259: 3955-3961
        • Leivo I.
        • Engvall E.
        Merosin, a protein specific for basement membranes of Schwann cells, straited muscle and trophoblast, is expressed late in nerve and muscle development.
        Proc Natl Acad Sci USA. 1988; 85: 1544-1548
        • Liu L.A.
        • Engvall E.
        Sarcoglycan isoforms in skeletal muscle.
        J Biol Chem. 1999; 274: 38171-38176
        • Friedenberg S.G.
        • Meurs K.M.
        Genotype imputation in the domestic dog.
        Mamm Genome. 2016; https://doi.org/10.1007/s00335-016-9636-9
        • McLaren W.
        • Pritchard B.
        • Rios D.
        • Chen Y.
        • Flicek P.
        • Cunningham F.
        Deriving the consequences of genomic variants with the Ensembl. API and SNP Effect Predictor.
        Bioinformatics. 2010; 26: 2069-2070https://doi.org/10.1093/bioinformatics/btq330
        • Jagannathan V.
        • Drögemüller C.
        • Leeb T.
        Dog Biomedical Variant Database Consortium (DBVDC). A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves.
        Anim Genet. 2019; 50 (. Epub 2019 Sep 5): 695-704https://doi.org/10.1111/age.12834
        • Plassais J.
        • Kim J.
        • Davis B.W.
        • Karyadi D.M.
        • Hogan A.N.
        • Harris A.C.
        • et al.
        Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology.
        Nat Commun. 2019; 10 (Apr2): 1489https://doi.org/10.1038/s41467-019-09373-w
        • Baker N.L.
        • Morgelin M.
        • Peat R.
        • Goemans N.
        • North K.N.
        • Bateman J.F.
        • et al.
        Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy.
        Hum Mol Genet. 2005; 14 (doi.org/): 279-293https://doi.org/10.1093/hmg/ddi025
        • Lampe A.K.
        • Zou Y.
        • Sudano D.
        • O'Brien K.K.
        • Hicks D.
        • Laval S.H.
        • et al.
        Exon skipping mutations in collagen VI are common and are predictive for severity and inheritance.
        Hum Mutat. 2008; 29: 809-822https://doi.org/10.1002/humu.20704
        • Bolduc V.
        • Zou Y.
        • Ko D.
        • Bönnemann C.G.
        siRNA-mediated allele-specific silencing of a COL6A3 mutation in a cellular model of dominant Ullrich musculardystrophy.
        Mol Ther Nucleic Acids. 2014; 3: e147https://doi.org/10.1038/mtna.2013.74
        • Nallamilli B.R.R.
        • Chakravorty S.
        • Kesari A.
        • Tanner A.
        • Ankala A.
        • Schneider T.
        • et al.
        Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients.
        Ann Clin Transl Neurol. 2018; 5 (eCollection 2018 Dec): 1574-1587https://doi.org/10.1002/acn3.649
        • Sabatelli P.
        • Gara S.K.
        • Grumati P.
        • Urciuolo A.
        • Gualandi F.
        • Curci R.
        • et al.
        Expression of the collagen VI α5 and α6 chains in normal human skin and in skin of patients with collagen VI-related myopathies.
        J Invest Derm. 2011; 131 (Jan131(1)99-107. doi:. Epub 2010 Sep 30): 99-107https://doi.org/10.1038/jid.2010.284
        • Fitzgerald J.
        • Rich C.
        • Zhou F.H.
        • Hansen U.
        Three novel collagen VI chains, alpha4(VI), alpha 5 (VI), and alpha6 (VI).
        J Biol Chem. 2008; 283 (Epub 2008 Apr 9): 20170-20180https://doi.org/10.1074/jbc.M710139200