Advertisement

Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1)

  • John C. Sparrow
    Affiliations
    Department of Biology, University of York, York, YO10 5DD, UK
    Search for articles by this author
  • Kristen J. Nowak
    Affiliations
    Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australian Neuromuscular Research Institute, 4th Floor, ‘A’ Block, QEII Medical Centre, Nedlands, Western Australia 6009, Australia

    Centre for Medical Research, West Australian Institute for Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia

    Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
    Search for articles by this author
  • Hayley J. Durling
    Affiliations
    Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australian Neuromuscular Research Institute, 4th Floor, ‘A’ Block, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
    Search for articles by this author
  • Alan H. Beggs
    Affiliations
    Children's Hospital, Harvard Medical School, Genetics Division, 300 Longwood Avenue, Boston, MA 02115, USA
    Search for articles by this author
  • Carina Wallgren-Pettersson
    Affiliations
    Department of Medical Genetics, University of Helsinki and Folkhälsan Institute of Genetics, PO BOX 21 (Haartmaninkatu 3), 00014, Helsinki, Finland
    Search for articles by this author
  • Norma Romero
    Affiliations
    Institute de Myologie, INSERM U.523, Hopital de la Salpetriere, 47 Boulevard de l'Hopital, 75013 Paris, France
    Search for articles by this author
  • Ikuya Nonaka
    Affiliations
    National Centre Hospital for Mental, Nervous and Muscular Disorders, NCNP, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187, Japan
    Search for articles by this author
  • Nigel G. Laing
    Correspondence
    Corresponding author. Tel.: +8-9346-2659; fax: +8-9346-3487
    Affiliations
    Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australian Neuromuscular Research Institute, 4th Floor, ‘A’ Block, QEII Medical Centre, Nedlands, Western Australia 6009, Australia

    Centre for Medical Research, West Australian Institute for Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
    Search for articles by this author

      Abstract

      Mutations in the skeletal muscle alpha-actin gene (ACTA1) associated with congenital myopathy with excess of thin myofilaments, nemaline myopathy and intranuclear rod myopathy were first described in 1999. At that time, only 15 different missense mutations were known in ACTA1. More than 60 mutations have now been identified. This review analyses this larger spectrum of mutations in ACTA1. It investigates the molecular consequences of the mutations found to date, provides a framework for genotype–phenotype correlation and suggests future studies in light of results of investigation of normal and mutant actin in other systems, notably the actin specific to the indirect flight muscles of Drosophila. The larger series confirms that the majority of ACTA1 mutations are dominant, a small number are recessive and most isolated cases with no previous family history have de novo dominant mutations. The severity of the disease caused ranges from lack of spontaneous movements at birth requiring immediate mechanical ventilation, to mild disease compatible with life to adulthood. Overall, the mutations within ACTA1 are randomly distributed throughout the protein. However, the larger series of mutations now available indicates that there may be clustering of mutations associated with some phenotypes, e.g. actin myopathy. This would suggest that interference with certain actin functions may be more associated with certain phenotypes, though the exact pathophysiology of the actin mutations remains unknown.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nowak K.J.
        • Wattanasirichaigoon D.
        • Goebel H.H.
        • et al.
        Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy.
        Nat Genet. 1999; 23: 208-212
        • Goebel H.H.
        • Piirso A.
        • Warlo I.
        • Schofer O.
        • Kehr S.
        • Gaude M.
        Infantile intranuclear rod myopathy.
        J Child Neurol. 1997; 12: 22-30
        • Karpati G.
        • Carpenter S.
        Skeletal muscle in neuromuscular diseases.
        in: Rowland L.P. Di Mauro S. Myopathies—Handbook of Clinical Neurology. 62. Elsevier, Amsterdam1992: 1-48
        • Bornemann A.
        • Petersen M.B.
        • Schmalbruch H.
        Fatal congenital myopathy with actin filament deposits.
        Acta Neuropathol (Berl). 1996; 92: 104-108
        • Barohn R.J.
        • Jackson C.E.
        • Kagan-Hallett K.S.
        Neonatal nemaline myopathy with abundant intranuclear rods.
        Neuromus Disord. 1994; 4: 513-520
        • Shy G.M.
        • Engel W.K.
        • Somers J.E.
        • Wanko T.
        Nemaline myopathy: a new congenital myopathy.
        Brain. 1963; 86: 793-810
        • Conen P.E.
        • Murphy E.G.
        • Donohue W.L.
        Light and electron microscopic studies of ‘myogranules’ in a child with hypotonia and muscle weakness.
        Can Med Assoc J. 1963; 89: 983-986
        • Wallgren-Pettersson C.
        • Laing N.G.
        • 83rd E.N.M.C.
        International Workshop: 4th Workshop on Nemaline Myopathy 22–24 September 2000, Naarden, The Netherlands.
        Neuromuscul Disord. 2001; 11: 589-595
        • Ilkovski B.
        • Cooper S.T.
        • Nowak K.
        • et al.
        Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene.
        Am J Hum Genet. 2001; 68: 1333-1343
        • Jungbluth H.
        • Sewry C.A.
        • Brown S.C.
        • et al.
        Mild phenotype of nemaline myopathy with sleep hypoventilation due to mutation in the skeletal muscle α-actin (ACTA1) gene.
        Neuromuscul Disord. 2001; 11: 35-40
        • Iannaccone S.T.
        • Schnell C.
        • Muirhead D.
        • et al.
        Nemaline myopathy associated with dominant inheritance and mutations in the skeletal muscle alpha-actin gene.
        Neuromuscul Disord. 2001; 11: 624
        • Buxmann H.
        • Schlosser R.
        • Schlote W.
        • et al.
        Congenital nemaline myopathy due to ACTA1-gene mutation and carnitine insufficiency: A case report.
        Neuropediatrics. 2001; 32: 267-270
        • Fardeau M.
        • Tome F.M.S.
        Congenital myopathies.
        in: Engel A.G. Franzini-Armstrong C. Myology. McGraw-Hill Inc, New York1994: 1487-1532
        • North K.N.
        • Laing N.G.
        • Wallgren-Pettersson C.
        • et al.
        Nemaline myopathy: Current concepts.
        J Med Genet. 1997; 34: 705-713
        • Wallgren-Pettersson C.
        • Laing N.G.
        Report of the 70th ENMC International Workshop: Nemaline myopathy 11–13 June 1999, Naarden, The Netherlands.
        Neuromuscul Disord. 2000; 10: 299-306
        • Laing N.G.
        • Wilton S.D.
        • Akkari P.A.
        • et al.
        A mutation in the α-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy.
        Nat Genet. 1995; 9: 75-79
        • Tan P.
        • Briner J.
        • Boltshauser E.
        • et al.
        Homozygosity for a nonsense mutation in the alpha-tropomyosin gene TPM3 in a patient with severe infantile nemaline myopathy.
        Neuromuscul Disord. 1999; 9: 573-579
        • Wattanasirichaigoon D.
        • Swoboda K.J.
        • Takada F.
        • et al.
        Mutations of the slow muscle α-tropomyosin gene, TPM3, are a rare cause of nemaline myopathy.
        Neurology. 2002; 59: 613-617
        • Pelin K.
        • Hilpela P.
        • Donner K.
        • et al.
        Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy.
        Proc Natl Acad Sci USA. 1999; 96: 2305-2310
        • Johnston J.J.
        • Kelley R.I.
        • Crawford T.O.
        • et al.
        A novel nemaline myopathy in the Amish caused by a mutation in troponin T1.
        Am J Hum Genet. 2000; 67: 814-821
        • Donner K.
        • Ollikainen M.
        • Ridanpää M.
        • et al.
        Mutations in the β-tropomyosin (TPM2) gene—a rare cause of nemaline myopathy.
        Neuromuscul Disord. 2002; 12: 151-158
        • Scacheri P.C.
        • Hoffman E.P.
        • Fratkin J.D.
        • et al.
        A novel ryanodine receptor gene mutation causing both cores and rods in congenital myopathy.
        Neurology. 2000; 55: 1689-1696
        • Monnier N.
        • Romero N.B.
        • Lerale J.
        • et al.
        An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor.
        Hum Mol Genet. 2000; 9: 2599-2608
        • Olson T.M.
        • Michels V.V.
        • Thibodeau S.N.
        • Tai Y.-S.
        • Keating M.T.
        Actin mutations in dilated cardiomyopathy, a heritable form of heart failure.
        Science. 1998; 280: 750-752
        • Mogensen J.
        • Klausen I.C.
        • Pedersen A.K.
        • et al.
        α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy.
        J Clin Invest. 1999; 103: R39-R43
        • Olson T.M.
        • Doan T.P.
        • Kishimoto N.Y.
        • Whitby F.G.
        • Ackerman M.J.
        • Fananapazir L.
        Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy.
        J Mol Cell Cardiol. 2000; 32: 1687-1694
        • Sparrow J.C.
        • Drummond D.R.
        • Hennessey E.S.
        • Clayton J.D.
        • Lindegaard F.B.
        Drosophila actin mutants and the study of myofibrillar assembly and function.
        Symp Soc Exp Biol. 1992; 46: 111-129
        • Nongthomba U.
        • Pasalodos-Sanchez S.
        • Clark S.
        • Clayton J.D.
        • Sparrow J.C.
        Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles.
        J Muscle Res Cell Motility. 2001; 22: 111-119
        • Sheterline P.
        • Clayton J.
        • Sparrow J.C.
        Sheterline P. Protein profiles. 1. Oxford University Press, Oxford1998: 272
        • Naimi B.
        • Harrison A.
        • Cummins M.
        • et al.
        A tropomyosin-2 mutation suppresses a troponin I myopathy in Drosophila.
        Mol Biol Cell. 2001; 12: 1529-1539
        • Gordon A.M.
        • Homsher E.
        • Regnier M.
        Regulation of contraction in striated muscle.
        Physiol Rev. 2000; 80: 853-924
        • Okamoto H.
        • Hiromi Y.
        • Ishikawa E.
        • et al.
        Molecular characterization of mutant actin genes which induce heat-shock proteins in Drosophila flight muscles.
        EMBO J. 1986; 5: 589-596
        • Sun X.
        • Maquat L.E.
        Nonsense-mediated decay: assaying for effects on selenoprotein mRNAs.
        Curr Biol. 2002; 12: R196-R197
        • Holmes K.C.
        • Popp D.
        • Gebhard W.
        • Kabsch W.
        Atomic model of the actin filament.
        Nature. 1990; 347: 44-49
        • Crawford K.
        • Flick R.
        • Close L.
        • et al.
        Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period.
        Mol Cell Biol. 2002; 22: 5887-5896
        • Wertman K.F.
        • Drubin D.G.
        Actin constitution: guaranteeing the right to assemble.
        Science. 1992; 258: 759-760
        • Wertman K.F.
        • Drubin D.G.
        • Botstein D.
        Systematic mutational analysis of the yeast ACT1 gene.
        Genetics. 1992; 132: 337-350
        • Hennessey E.S.
        • Harrison A.
        • Drummond D.R.
        • Sparrow J.C.
        Mutant actin: a dead end?.
        J Muscle Res Cell Motility. 1992; 13: 127-131
        • Sewry C.A.
        • Brown S.C.
        • Pelin K.
        • et al.
        Abnormalities in the expression of nebulin in chromosome-2 linked nemaline myopathy.
        Neuromuscul Disord. 2001; 11: 146-153
        • Monaco A.P.
        • Bertelson C.J.
        • Liechti-Gallati S.
        • Moser H.
        • Kunkel L.M.
        An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus.
        Genomics. 1988; 2: 90-95
        • Masters C.
        Interactions between glycolytic enzymes and components of the cytomatrix.
        J Cell Biol. 1984; 99: 222s-225s
        • Kabsch W.
        • Mannherz H.G.
        • Suck D.
        • Pai E.F.
        • Holmes K.C.
        Atomic structure of the actin: DNase I complex.
        Nature. 1990; 347: 37-44
        • McLaughlin P.J.
        • Gooch J.T.
        • Mannherz H.G.
        • Weeds A.G.
        Structure of gelsolin segment 1-actin complex and the mechanism of filament severing.
        Nature. 1993; 364: 685-692
        • Schutt C.E.
        • Myslik J.C.
        • Rozycki M.D.
        • Goonesekere N.C.
        • Lindberg U.
        The structure of crystalline profilin-beta-actin.
        Nature. 1993; 365: 810-816
        • Otterbein L.R.
        • Graceffa P.
        • Dominguez R.
        The crystal structure of uncomplexed actin in the ADP state.
        Science. 2001; 293: 708-711
        • Lorenz M.
        • Popp D.
        • Holmes K.C.
        Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm.
        J Mol Biol. 1993; 234: 826-836
        • Orlova A.
        • Chen X.
        • Rubenstein P.A.
        • Egelman E.H.
        Modulation of yeast F-actin structure by a mutation in the nucleotide-binding cleft.
        J Mol Biol. 1997; 271: 235-243
        • Hegyi G.
        • Mak M.
        • Kim E.
        • Elzinga M.
        • Muhlrad A.
        • Reisler E.
        Intrastrand cross-linked actin between Gln-41 and Cys-374I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine.
        Biochemistry. 1998; 37: 17784-17792
        • Vandekerckhove J.
        • Kabsch W.
        Structure and function of actin.
        Annu Rev Biophys Biomol Struct. 1992; 21: 49-76
        • Orlova A.
        • Egelman E.H.
        A conformational change in the actin subunit can change the flexibility of the actin filament.
        J Mol Biol. 1993; 232: 334-341
        • Crosbie R.H.
        • Chalovich J.M.
        • Reisler E.
        Interaction of caldesmon and myosin subfragment 1 with the C-terminus of actin.
        Biochem Biophys Res Commun. 1992; 184: 239-245
        • Kim E.
        • Miller C.J.
        • Motoki M.
        • Seguro K.
        • Muhlrad A.
        • Reisler E.
        Myosin-induced changes in F-actin: fluorescence probing of subdomain 2 by dansyl ethylenediamine attached to Gln-41.
        Biophys J. 1996; 70: 1439-1446
        • Kim E.
        • Bobkova E.
        • Miller C.J.
        • et al.
        Intrastrand cross-linked actin between Gln-41 and Cys-374. III. Inhibition of motion and force generation with myosin.
        Biochemistry. 1998; 37: 17801-17809
        • Orlova A.
        • Egelman E.H.
        Structural dynamics of F-actin: I. Changes in the C terminus.
        J Mol Biol. 1995; 245: 582-597
        • Strzelecka-Golaszewska H.
        • Moraczewska J.
        • Khaitlina S.Y.
        • Mossakowska M.
        Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion.
        Eur J Biochem. 1993; 211: 731-742
        • Wozniak A.
        • Hult T.
        • Lindberg U.
        • Strzelecka-Golaszewska H.
        Effects of the type of divalent cationCa2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin.
        Biochem J. 1996; 316: 713-721
        • Crosbie R.H.
        • Miller C.
        • Cheung P.
        • Goodnight T.
        • Muhlrad A.
        • Reisler E.
        Structural connectivity in actin: effect of C-terminal modifications on the properties of actin.
        Biophys J. 1994; 67: 1957-1964
        • Kim E.
        • Reisler E.
        Intermolecular coupling between loop 38-52 and the C-terminus in actin filaments.
        Biophys J. 1996; 71: 1914-1919
        • Chen X.
        • Cook R.K.
        • Rubenstein P.A.
        Yeast actin with a mutation in the ‘hydrophobic plug’ between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect.
        J Cell Biol. 1993; 123: 1185-1195
      1. Kuang B, Rubenstein PA. The effects of severely decreased hydrophobicity in a subdomain 3/4 loop on the dynamics and stability of yeast G-actin. J Biol Chem 1997;272:4412–4418.

        • Feng L.
        • Kim E.
        • Lee W.L.
        • et al.
        Fluorescence probing of yeast actin subdomain 3/4 hydrophobic loop 262-274. Actin–actin and actin–myosin interactions in actin filaments.
        J Biol Chem. 1997; 272: 16829-16837
        • Kim E.
        • Wriggers W.
        • Phillips M.
        • Kokabi K.
        • Rubenstein P.A.
        • Reisler E.
        Cross-linking constraints on F-actin structure.
        J Mol Biol. 2000; 299: 421-429
        • Musib R.
        • Wang G.
        • Geng L.
        • Rubenstein P.A.
        Effect of polymerization on the subdomain 3/4 loop of yeast actin.
        J Biol Chem. 2002; 277: 22699-22709
        • Amberg D.C.
        • Basart E.
        • Botstein D.
        Defining protein interactions with yeast actin in vivo.
        Nat Struct Biol. 1995; 2: 28-35
        • Holtzman D.A.
        • Wertman K.F.
        • Drubin D.G.
        Mapping actin surfaces required for functional interactions in vivo.
        J Cell Biol. 1994; 126: 423-432
        • Razzaq A.
        • Schmitz S.
        • Veigel C.
        • Molloy J.E.
        • Geeves M.A.
        • Sparrow J.C.
        Actin residue glu(93) is identified as an amino acid affecting myosin binding.
        J Biol Chem. 1999; 274: 28321-28328
        • Rayment I.
        • Holden H.M.
        • Whittaker M.
        • et al.
        Structure of the actin-myosin complex and its implications for muscle contraction.
        Science. 1993; 261: 58-65
        • Rayment I.
        • Rypniewski W.R.
        • Schmidt-Base K.
        • et al.
        Three-dimensional structure of myosin subfragment-1: a molecular motor.
        Science. 1993; 261: 50-58
        • Craig R.
        • Lehman W.
        Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments.
        J Mol Biol. 2001; 311: 1027-1036
        • McKillop D.F.
        • Geeves M.A.
        Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament.
        Biophys J. 1993; 65: 693-701
        • McGough A.
        • Way M.
        • DeRosier D.
        Determination of the alpha-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis.
        J Cell Biol. 1994; 126: 433-443
        • Fabbrizio E.
        • Bonet-Kerrache A.
        • Leger J.J.
        • Mornet D.
        Actin-dystrophin interface.
        Biochemistry. 1993; 32: 10457-10463
        • Lebart M.C.
        • Mejean C.
        • Boyer M.
        • Roustan C.
        • Benyamin Y.
        Localization of a new alpha-actinin binding site in the COOH-terminal part of actin sequence.
        Biochem Biophys Res Commun. 1990; 173: 120-126
        • Lebart M.-C.
        • Mejean C.
        • Roustan C.
        • Benyamin Y.
        Further characterization of the α-actinin–actin interface and comparison with filamin-binding sites on actin.
        J Biol Chem. 1993; 268: 5642-5648
        • Mimura N.
        • Asano A.
        Further characterization of a conserved actin-binding 27-kDa fragment of actinogelin and alpha-actins and mapping of their binding sites on the actin molecule by chemical cross-linking.
        J Biol Chem. 1987; 262: 4717-4723
        • Wright J.
        • Huang Q.-Q.
        • Wang K.
        Nebulin is a full-length template of actin filaments in the skeletal muscle sarcomere: an immunoelectron microscopic study of its orientation and span with site-specific antibodies.
        J Muscle Res Cell Motil. 1993; 14: 476-483
        • Lukoyanova N.
        • VanLoock M.S.
        • Orlova A.
        • Galkin V.E.
        • Wang K.
        • Egelman E.H.
        Each actin subunit has three nebulin binding sites: implications for steric blocking.
        Curr Biol. 2002; 12: 383-388
        • Corbett M.A.
        • Robinson C.S.
        • Dunglison G.F.
        • et al.
        A mutation in alpha-tropomyosin (slow) affects muscle strength, maturation and hypertrophy in a mouse model for nemaline myopathy.
        Hum Mol Genet. 2001; 10: 317-328
        • Laing N.G.
        Inherited disorders of sarcomeric proteins.
        Curr Opin Neurol. 1999; 12: 513-518