Advertisement
Research Article| Volume 24, ISSUE 7, P596-603, July 2014

A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle

      Abstract

      Duchenne muscular dystrophy is an inherited degenerative muscle disease with progressive weakness of skeletal and cardiac muscle. Disturbed calcium homeostasis and signalling pathways result in degeneration/regeneration cycles with fibrotic remodelling of muscle tissue, sustained by chronic inflammation. In addition to altered microarchitecture, regeneration in dystrophic muscle fibres is often only classified by centrally located nuclei but correlation of the regeneration process to nuclear volumes, myosin amounts, architecture and functional quality are missing, in particular in old muscles where the regenerative capacity is exhausted. Such information could yield novel regeneration-to-function biomarkers. Here we used second harmonic generation and multi photon fluorescence microscopy in intact single muscle fibres from wild-type, dystrophic mdx and transgenic mdx mice expressing an Δex 17–48 mini-dystrophin to determine the percentage of centronucleated fibres and nucleus-to-myosin volume ratio as a function of age. Based on this ratio we define a ‘biomotoric efficiency’ as an optical measure for fibre maturation, which is close to unity in adult wild-type and mini-dystrophin fibres, but smaller in very young and old mdx mice as a result of ongoing cell maturation (young) and regeneration (aged). With these parameters it is possible to provide a quantitative measure about muscle fibre regeneration.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Neuromuscular Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Emery A.E.
        Population frequencies of inherited neuromuscular diseases – a world survey.
        Neuromuscul Disord. 1991; 1: 19-29
        • Hoffman E.P.
        • Brown Jr., R.H.
        • Kunkel L.M.
        Dystrophin: the protein product of the Duchenne muscular dystrophy locus.
        Cell. 1987; 51: 919-928
        • Friedrich O.
        • Both M.
        • Gillis J.M.
        • Chamberlain J.S.
        • Fink R.H.
        Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice.
        J Physiol. 2004; 555: 251-265
        • Friedrich O.
        • von Wegner F.
        • Chamberlain J.S.
        • Fink R.H.
        • Rohrbach P.
        L-type Ca2+ channel function is linked to dystrophin expression in mammalian muscle.
        PLoS ONE. 2008; 3: e1762
        • Gailly P.
        New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy.
        Biochim Biophys Acta. 2002; 1600: 38-44
        • Teichmann M.D.
        • Wegner F.V.
        • Fink R.H.
        • et al.
        Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression.
        PLoS ONE. 2008; 3: e3644
        • Whitehead N.P.
        • Yeung E.W.
        • Allen D.G.
        Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species.
        Clin Exp Pharmacol Physiol. 2006; 33: 657-662
        • Yeung E.W.
        • Head S.I.
        • Allen D.G.
        Gadolinium reduces short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres.
        J Physiol. 2003; 552: 449-458
        • Chamberlain J.S.
        • Metzger J.
        • Reyes M.
        • Townsend D.
        • Faulkner J.A.
        Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma.
        FASEB J. 2007; 21: 2195-2204
        • Allen D.G.
        • Whitehead N.P.
        Duchenne muscular dystrophy – what causes the increased membrane permeability in skeletal muscle?.
        Int J Biochem Cell Biol. 2011; 43: 290-294
        • Tanabe Y.
        • Esaki K.
        • Nomura T.
        Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse.
        Acta Neuropathol. 1986; 69: 91-95
        • Chan S.
        • Head S.I.
        • Morley J.W.
        Branched fibers in dystrophic mdx muscle are associated with a loss of force following lengthening contractions.
        Am J Physiol Cell Physiol. 2007; 293: C985-C992
        • Head S.I.
        • Williams D.A.
        • Stephenson D.G.
        Abnormalities in structure and function of limb skeletal muscle fibres of dystrophic mdx mice.
        Proc R Soc Biol Sci. 1992; 248: 163-169
        • Pastoret C.
        • Sebille A.
        Mdx mice show progressive weakness and muscle deterioration with age.
        J Neurol Sci. 1995; 129: 97-105
        • Buttgereit A.
        • Weber C.
        • Garbe C.S.
        • Friedrich O.
        From chaos to split-ups – SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle.
        J Pathol. 2013; 229: 477-485
        • Friedrich O.
        • Both M.
        • Weber C.
        • et al.
        Microarchitecture is severely compromised but motor protein function is preserved in dystrophic mdx skeletal muscle.
        Biophys J. 2010; 98: 606-616
        • Pastoret C.
        • Sebille A.
        Further aspects of muscular dystrophy in mdx mice.
        Neuromuscul Disord. 1993; 3: 471-475
        • Williams D.A.
        • Head S.I.
        • Lynch G.S.
        • Stephenson D.G.
        Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice.
        J Physiol. 1993; 460: 51-67
        • Head S.I.
        • Houweling P.J.
        • Chan S.
        • Chen G.
        • Hardeman E.C.
        Properties of regenerated EDL mouse muscle following notexin injury.
        Exp Physiol. 2014; 99: 664-674
        • Luz M.A.
        • Marques M.J.
        • Santo Neto H.
        Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells.
        Braz J Med Biol Res [Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica]. 2002; 35: 691-695
        • Landing B.H.
        • Dixon L.G.
        • Wells T.R.
        Studies on isolated human skeletal muscle fibers, including a proposed pattern of nuclear distribution and a concept of nuclear territories.
        Hum Pathol. 1974; 5: 441-461
        • Hall Z.W.
        • Ralston E.
        Nuclear domains in muscle cells.
        Cell. 1989; 59: 771-772
        • Van der Meer S.F.
        • Jaspers R.T.
        • Degens H.
        Is the myonuclear domain size fixed?.
        J Musculoskelet Neuronal Interact. 2011; 11: 286-297
        • Phelps S.F.
        • Hauser M.A.
        • Cole N.M.
        • et al.
        Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice.
        Hum Mol Genet. 1995; 4: 1251-1258
        • Both M.
        • Vogel M.
        • Friedrich O.
        • et al.
        Second harmonic imaging of intrinsic signals in muscle fibers in situ.
        J Biomed Opt. 2004; 9: 882-892
        • Plotnikov S.V.
        • Millard A.C.
        • Campagnola P.J.
        • Mohler W.A.
        Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres.
        Biophys J. 2006; 90: 693-703
        • Turk R.
        • Sterrenburg E.
        • de Meijer E.J.
        • van Ommen G.J.
        • den Dunnen J.T.
        • t Hoen P.A.
        Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling.
        BMC Genomics. 2005; 6: 98
        • Smith J.
        Muscle growth factors, ubiquitin and apoptosis in dystrophic muscle: apoptosis declines with age in the mdx mouse.
        Basic Appl Myol. 1996; 4: 279-284
        • Terada M.
        • Lan Y.B.
        • Kawano F.
        • et al.
        Myonucleus-related properties in soleus muscle fibers of mdx mice.
        Cells Tissues Organs. 2010; 191: 248-259
        • Singh R.
        • Millman G.
        • Turin E.
        • et al.
        Increases in nuclear p65 activation in dystrophic skeletal muscle are secondary to increases in the cellular expression of p65 and are not solely produced by increases in IkappaB-alpha kinase activity.
        J Neurol Sci. 2009; 285: 159-171
        • Graham K.M.
        • Singh R.
        • Millman G.
        • et al.
        Excessive collagen accumulation in dystrophic (mdx) respiratory musculature is independent of enhanced activation of the NF-kappaB pathway.
        J Neurol Sci. 2010; 294: 43-50
        • Blau H.M.
        • Webster C.
        • Pavlath G.K.
        Defective myoblasts identified in Duchenne muscular dystrophy.
        Proc Natl Acad Sci USA. 1983; 80: 4856-4860
        • Mouisel E.
        • Vignaud A.
        • Hourde C.
        • Butler-Browne G.
        • Ferry A.
        Muscle weakness and atrophy are associated with decreased regenerative capacity and changes in mTOR signaling in skeletal muscles of venerable (18–24-month-old) dystrophic mdx mice.
        Muscle Nerve. 2010; 41: 809-818
        • Hollinger K.
        • Selsby J.T.
        The physiological response of protease inhibition in dystrophic muscle.
        Acta Physiol. 2013; 208: 234-244
        • Head S.I.
        Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue.
        Exp Physiol. 2010; 95: 641-656
        • Klymiuk N.
        • Blutke A.
        • Graf A.
        • et al.
        Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle.
        Hum Mol Genet. 2013; 22: 4368-4382
        • Schuh R.A.
        • Jackson K.C.
        • Khairallah R.J.
        • Ward C.W.
        • Spangenburg E.E.
        Measuring mitochondrial respiration in intact single muscle fibers.
        Am J Physiol Regul Integr Comp Physiol. 2012; 302: R712-R719
        • Dunn J.F.
        • Frostick S.
        • Brown G.
        • Radda G.K.
        Energy status of cells lacking dystrophin: an in vivo/in vitro study of mdx mouse skeletal muscle.
        Biochim Biophys Acta. 1991; 1096: 115-120
        • Louboutin J.P.
        • Fichter-Gagnepain V.
        • Thaon E.
        • Fardeau M.
        Morphometric analysis of mdx diaphragm muscle fibres. Comparison with hindlimb muscles.
        Neuromuscul Disord. 1993; 3: 463-469
        • Temparis S.
        • Asensi M.
        • Taillandier D.
        • et al.
        Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats.
        Cancer Res. 1994; 54: 5568-5573
        • Llewellyn M.E.
        • Barretto R.P.
        • Delp S.L.
        • Schnitzer M.J.
        Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans.
        Nature. 2008; 454: 784-788
        • Yao D.K.
        • Chen R.
        • Maslov K.
        • Zhou Q.
        • Wang L.V.
        Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei.
        J Biomed Opt. 2012; 17: 056004
        • Tang S.
        • Jung W.
        • McCormick D.
        • et al.
        Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning.
        J Biomed Opt. 2009; 14: 034005